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Abstract

We review and analyze a thought experiment first published in Iacono (1991) and reintro-
duced in Iacono and Ben-Shakhar (2019).  The Iacono Thought Experiment (ITE) appears to have 
used backtracking methods to generate a series of assumptions and preconditions which would 
make it possible to have a polygraph test with chance accuracy that produces a confession-criterion 
field study with high accuracy.  From this thought experiment, Iacono promulgated a hypothesis 
that all polygraph confession criterion studies produce exaggeratedly high estimates of accuracy.  
Our analysis of the assumptions and preconditions of the ITE found them to be unrepresentative 
and highly unlikely to be met in real world settings. We used a converging evidence approach that 
applied meta-analytic results, field studies that did not use a confession criterion, and data from 
wrongful conviction cases that involved polygraph examinations to test the Iacono hypothesis.  We 
found strong falsification evidence to the Iacono hypothesis and conclude that it should be aban-
doned as a meaning description of field polygraph research. 

Keywords: Ocular-motor, deception detection, eye tracking, reading

Analyzing Iacono’s Thought 
Experiment About Polygraph

Field Studies:
Reason or Fantasy?

Polygraph tests represent an important 
and widespread application of a psychologi-
cal test in law enforcement, national security, 
and employment around the world. Interna-
tionally, the American Polygraph Association 
shows members from 62 countries.  Zhang 

Analyzing Iacono’s Thought Experiment About Polygraph Field Studies:

Reason or Fantasy?

Charles R. Honts

Boise State University

and

Steven Thurber

Minnesota Department of Human Services

(2011) estimated that there were as many as 
8000 polygraph examiners operating in China 
alone.  Despite the ubiquitous nature of poly-
graph testing, it has received relatively little 
attention in academic psychology and often, 
that attention has been in the form of negative 
commentary.  

The most commonly used - and criti-
cized - polygraph test is the Comparison 
Question Test (CQT).  The CQT comes in sev-

Author Note

Correspondence should be addressed to Charles R. Honts, Ph. D., Department of Psychological Science, Boise State 
University, 1910 University Drive MS-1715, Boise ID 83725-1715.  The authors would like to thank Adela Stephanescu 
for her help in editing the completed manuscript.
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eral variants, but in all cases, it monitors the 
subject’s autonomic physiology (usually, res-
piration, electrodermal activity, relative blood 
pressure, and often peripheral vasomotor ac-
tivity) while the subject answers a series of 
questions.  The question series contains two 
categories of critical questions (usually two 
or three of each).  Relevant questions directly 
address the matter under investigation. Com-
parison questions are designed and presented 
in such a way that every subject lies, or is as-
sumed to lie, in their response to them during 
the test.  The subject’s physiological responses 
are expected to show an interaction, so that 
subjects who are deceptive to the relevant 
questions show larger physiological respons-
es to relevant questions as compared to their 
comparison questions.  Subjects who are being 
truthful to the relevant questions are expected 
to show the opposite pattern, with physiologi-
cal responses to comparison questions being 
larger than those to relevant questions.   

There are a number of reviews of CQT 
research, typified by but not limited to the fol-
lowing examples: Raskin, Honts, and Kircher 
(1997), Iacono & Lykken (1997), The National 
Research Council (NRC, 2003), Honts (2004), 
Vrij (2008); American Polygraph Association 
(2011);  Raskin, Honts, and Kircher (2014), 
and Iacono and Ben-Shakhar (2018).  There 
is variation across the reviews, but neverthe-
less they generally produced overall accuracy 
estimates over 80%.  

However, all of those reviews can be 
criticized for selective study choices and a lack 
of meta-analytic scrutiny. None attempted to 
test moderator variables, although they some-
times reached conclusions that hypothesized 
or even assumed powerful moderator effects.  
The NRC (2003) report was particularly egre-
gious in that regard.  NRC found objectively 
high discrimination estimating the area under 
the Receiver Operating Characteristic (ROC) 
curve (AUC) at 0.89. The use of  ROC analysis 
and AUC as an effect size has been criticized 
as an inappropriate application of a technology 
developed to examine the performance of sig-
nal detection with technology (specifically an 
operator’s ability to view RADAR screens and 
distinguish enemy ships, friendly ships, and 
noise; Tape, 2019) to psychology in general 
(Balakrishnan, 1999), and to polygraph test-
ing in particular (Honts & Schweinle, 2009).

Nevertheless, the NRC used AUC as 
their index of effect size, but what does AUC 
actually mean and what does an AUC value 
of 0.89 imply about polygraph performance?  
The value of AUC can range from 0.50, which 
represents chance performance, to 1.00 which 
represents perfect performance (100% accu-
racy; Tape, 2019).  Tape (2019) qualitatively 
characterizes AUC values between 0.80 and 
0.90 as indicating a good discriminator and 
AUC values above 0.90 as excellent.  Tables 
(Rice & Harris, 2005) and software (DeCoster, 
2012) to convert between AUC and other mea-
sures of effect size are readily available.  Refer-
ence to those tables and software show that an 
AUC value of 0.89 corresponded to a Cohen’s d 
value of 1.74 and an r

pb of 0.66. Cohen (1969, 
1988, 1992) described large effects in psychol-
ogy as those with d values above 0.80 (cor-
responding rpb > 0.49).  Cohen famously said 
that, in applied psychology, effect sizes of d = 
0.8 are “about as high as they come” (Cohen, 
1988, p. 81).  Thus, the AUC effect size re-
ported by NRC (2003) indicates extremely high 
performance for the CQT as compared to other 
psychological tests and measures.          

In spite of powerful empirical evidence 
of the usefulness of the CQT as a discrimi-
nator of truth and deception, the NRC dis-
counted those findings, saying the research 
methods were substandard. To the present 
authors this seems to be an arrogant conclu-
sion as the NRC substituted their judgment 
about the qualities of research published in 
first tier peer-reviewed journals of psychologi-
cal science.  Such a position is insulting to 
the editors of those first-tier journals and the 
working scientists who peer-review for them.  
The NRC’s opinion is all the worse for the fact 
that none of the members of the NRC commit-
tee who wrote the report had ever published a 
study on deception detection.  

Additionally, the NRC and others were 
notably critical of the use of experimental 
(laboratory) studies for assessing CQT valid-
ity. Iacono & Lykken (1997) completely dis-
miss the experimental research on the CQT, 
arguing that the real-world motivational con-
texts could not be modeled experimentally and 
therefore laboratory results were qualitatively 
different from those in real cases.  However, 
the conclusions of the NRC and Iacono & Lyk-
ken (1997) about the generalizability of the 
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research methods in archival peer-reviewed 
journals of psychological science and the gen-
eralizability of experimental CQT research 
should all be viewed as opinion and not as 
fact, as none of those opinions were or are 
data-based.  

The history of academic disagreement 
over the accuracy (criterion validity) of the 
CQT is long and has at times been polemic.  
Those disagreements are typified by, but are 
not limited to, published exchanges between 
researchers from the University of Utah and 
the University of Minnesota, beginning in 1978 
in the journals Psychophysiology (Raskin and 
Hare, 1978; Lykken, 1978; Raskin, 1978) and 
Psychological Bulletin (Lykken, 1979; Raskin 
and Podlesny, 1979).  Direct exchanges in the 
literature between these groups continued 
until 2002 (Honts, Raskin, and Kircher, 2002; 
Iacono and Lykken, 2002).  Those disagree-
ments were argued at a number of different 
levels on various topics.  Throughout the dis-
agreements, the Minnesota group radically 
rejected the notion that deception detection 
could be validly modeled in the laboratory and 
held that the results of laboratory studies were 
not useful for estimating criterion validity in 
field applications because they lacked exter-
nal validity (generalizability). The Minnesota 
group holds that position until today despite 
the general rejection of such criticisms across 
the entirety of Psychological Science and spe-
cifically for deception detection.  Hartwig and 
Bond (2014) provided a general discussion 
about generalizability of laboratory studies 
and provided a specific empirical rejection of 
differences between experimental and field 
settings, within a meta-analysis of the inter-
personal deception detection research litera-
ture.

The scientific issues surrounding the 
contrast of experimental and field settings for 
research in interpersonal deception detection 
are nearly identical to those with the CQT.  Re-
cently, Honts and Thurber (2019) reported a 

comprehensive meta-analysis of the CQT that 
followed the analytic approach of Hartwig and 
Bond (2019).  Honts and Thurber (2019) re-
ported no statistically detectable effects for 
moderators of motivation, subject population 
or setting (experiment vs. field) in their com-
prehensive meta-analysis of the CQT.    

The Minnesota group was initially sup-
portive of field studies that fit their criterion 
for useful field studies.  However, starting in 
the 1980s, field studies were published that 
produced high levels of accuracy with the 
CQT (Honts & Raskin, 1988; Raskin, Kircher, 
Honts, & Horowitz, 1988).  Those studies were 
specifically designed to meet the Minnesota 
group’s criteria.  Subsequently, the Minne-
sota group rejected all field studies and took 
the radical position that valid research on the 
CQT could not be conducted.  One keystone of 
that position was a thought experiment first 
reported by Iacono (1991) and then with some 
modification reintroduced in Iacono and Ben-
Shakhar (2018)1.  The Iacono (1991) thought 
experiment was originally presented as fol-
lows:

Suppose that 800 crimes are being in-
vestigated using a polygraph technique 
that operates with exactly chance ac-
curacy; i.e. half of both the guilty and 
innocent suspects will fail and half will 
pass. Because the polygraph is often 
used in crimes for which there are mul-
tiple suspects, let us assume, without 
loss of generality, that we are dealing 
with 800 two-suspect crimes, and that 
for each, one suspect is guilty and the 
other innocent. Let us assume further 
that (1) the guilty suspect is tested first 
50% of the time, (2) the second sus-
pect will not be tested if the result of 
the first test indicates deception,  (3) 
neither innocent suspects nor those 
guilty suspects who pass the test will 
confess, and (4) 20% of the  guilty who 
fail the test and are subsequently in-
terrogated confess.  (Iacono, 1991, pp. 
202-203).  

1In Iacono and Ben-Shakhar provided two simplified versions of the Iacono Thought Experiment with single subjects and with paired 
subjects.  Assumptions 3, 4, and 5 do not apply to either the single subject or the paired tests as all subjects are tested regardless of the 
outcomes.  Confession rates are not specified for either analysis thus Assumption 7 is not specific. The other assumptions are either 
explicit or implied in the latter version of the Iacono Thought Experiment.
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Thought experiments are well known 
in philosophy and science. Thought ex-
periments can be defined as “devices of the 
imagination used to investigate the nature of 
things” (Brown, 2014).   One of the most fa-
mous scientific thought experiments was Gali-
leo’s reasoning that two objects of different 
weight must fall at the same speed.  Galileo’s 
thought experiment is easily validated from 
observations, such as the conclusive demon-
stration by Neil Armstrong on the moon when 
he dropped a feather and a hammer simulta-
neously and they landed on the surface at the 
same time (Pigllucci, 2006). Pigllucci further 
notes that thought experiments can also be 
wrong and be falsified by data.  Had Galileo’s 
thought experiment been invalidated by data, 
it would have been lost to history and forgot-
ten.  

Thought experiments can take on a 
number of forms or types. While a discussion 
of the multiple types of thought experiments is 
beyond the scope of this paper, it is worth not-
ing that Iacono’s thought experiment appears 
to be a type known as Backcasting (Robinson, 
1982). In Backcasting one imagines a desired 
or possible state of the world and then reasons 
backward from that end-state to the necessary 
precursors.  By definition, such logic neces-
sarily does not provide a description of real-
ity, it only provides a chain of precursors that 
might produce the desired end-state.  Such 
thought experiments, like all thought experi-
ments, are useful in the real world only to the 
extent that they can be tested and validated or 
falsified with data.  We begin our analysis of 
the Iacono Thought Experiment (ITE) by defin-
ing the hypothetical precursors that he either 
invented or selected to reach the desired end-
state where polygraph tests with chance ac-
curacy could produce a field study with high 
accuracy rates.     

Elucidation and Analysis of the 
Hypothetical Preconditions and 

Assumption of the Iacono Thought 
Experiment

Explicit Assumptions of the Iacono (1991) 
Thought Experiment.  

Iacono (1991) makes a number of ex-
plicit assumptions that were used to create a 

possible path to the desired end state.

1.Eight hundred subjects are tested 
where 400 are Innocent and 400 are 
Guilty.

2.The polygraph preforms exactly at 
chance accuracy of 50% correct, 50% 
incorrect, and no inconclusive out-
comes. This assumption is part of 
the overall desired end-state where a 
chance polygraph test could produce 
high accuracy outcomes.  All of the 
other assumptions also serve the es-
tablishment of that end-state.

3.Each crime has only two suspects. 
(Iacono makes this assumption and 
states that it is made “without loss of 
generality” (p. 203).

4.The Guilty suspect is tested first in 
half of the cases

5.If the first suspect fails the polygraph 
test, the second suspect will not be 
tested.

6.Neither innocent nor guilty suspects 
who pass the test will confess.

7.Only 20% of the Guilty suspects who 
fail and are interrogated will confess.

Implicit Assumptions of the Iacono 
Thought Experiment.  The following 
implicit assumptions are also neces-
sary for the mathematics and logic 
of the Iacono Thought Experiment to 
reach the desired end-state.

8.The polygraph is the only source of 
information about who is guilty in a 
criminal case.

9.Guilty people only confess after poly-
graph examinations.

Analysis of the Explicit 
Assumptions of the Iacono Thought 

Experiment

Assumption 1 is that the base rate of 
guilty to innocent subjects is equal.  The base 
rate of guilt in a criminal case will vary greatly 
depending upon when the polygraph is used. 
If it is used early in an investigation, there are 
likely to be far more innocent than guilty sub-
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jects; if it is used very late in an investigation, 
there may be many more guilty than innocent 
subjects.  The assumption of equal base rates 
is acceptable for a thought experiment as long 
as one recognizes that variations in the base 
rate could dramatically alter the end state re-
sults and that a base rate of 50% will be un-
usual in actual practice.

Assumption 2 is that the polygraph 
performs exactly as a coin flip.  This assump-
tion is made as a premise of the thought ex-
periment and it is a necessary component of 
the desired end state.  However, this premise 
is without empirical support in the real world. 
To our knowledge, there are no studies that 
show any version of the CQT to perform at 
chance levels.

Assumption 3 is that each case has 
only two suspects. This premise simplifies the 
mathematics necessary to achieve the desired 
end state of the Iacono thought experiment, 
but it is a premise that is rarely met in the 
real world, and is not at all representative of 
the field at the time Iacono (1991) was written 
(for example, Honts & Raskin, 1988,  Raskin, 
Kircher, Honts, & Horowitz, 1988 all contain 
many single and multiple suspect cases as do 
the more recent field studies).  Iacono’s asser-
tion that this assumption is made without a 
loss of generality (for the Backcasting thought 
experiment) is clearly not supported by data.      

Assumption 4 is that a guilty suspect 
is tested first in half of the cases. This as-
sumption is tenable only if there are only two 
suspects and that the examiner has no reason 
to test one or the other suspect first.   It is a 
convenient assumption for the thought experi-
ment, but it is unlikely to be widely represen-
tative of field polygraph testing.

Assumption 5 states that if the first 
person is tested and fails the second suspect 
will not be tested.  However, this is not the 
case in real investigations.  If the first subject 
is tested and fails but does not confess, then 
the remaining suspect or suspects will likely 
be tested to assess their involvement in the 
crime. The likely logic of investigators would 
be that the additional suspect(s) would not be 
suspects unless there was a reason to suspect 
them, and they may well be involved.  In our 
experience it is, in fact, common practice to 

test all suspects in a case during an investiga-
tion.

Assumption 6 states that neither in-
nocent suspects nor guilty suspects who pass 
the test will confess.  This is manifestly not 
true.  Under certain circumstances, such as a 
wrongfully failed or deliberately misrepresent-
ed polygraph test result, innocent suspects will 
confess to crimes they did not commit.  The 
White Paper of the American Psychology Law 
Society (Kassin, Drizin, Grisso, Gudjonsson, 
Leo, & Redlich, 2010) specifically notes that 
wrongfully failed or willfully misrepresented 
polygraph outcomes are a powerful false evi-
dence ploy that puts the actually innocent at 
increased risk of false confession.  Moreover, 
Bonpasse (2013), provides examples and dis-
cussion of actual cases where incorrect or mis-
represented polygraph outcomes have contrib-
uted to miscarriages of justice through their 
role in eliciting false confessions.  Assumption 
6 is also incorrect for guilty suspects who pass 
polygraphs, as it ignores the fact that investi-
gations rarely stop just because a polygraph 
has been passed.  If the subsequent investi-
gation continues and additional information 
is obtained, then the suspect will likely be in-
terviewed a second time, despite the passed 
polygraph, and may provide a confession then 
or confess later as part of a plea bargain.  At 
least one such case was included in Honts & 
Raskin (1988).

Assumption 7 this assumption states 
that only 20% of the guilty suspects who are 
interrogated will confess.  The choice of 20% is 
arbitrary and has no empirical basis.  The ac-
tual confession rate will depend upon the situ-
ation in which the tests were conducted.  Poly-
graph tests conducted for defense attorneys, 
or by the police on subjects who have defense 
counsel, are unlikely to be followed up with 
interrogations regardless of the polygraph out-
come.  On the other hand, the U. S. Depart-
ment of Defense (2002) has reported data in-
dicating that in one polygraph program, more 
than 90% of the failed polygraph examinations 
resulted in relevant admissions.  Clearly, the 
rate chosen for this assumption will have a 
major impact on the resultant outcomes of the 
ITE. Moreover, since all confession rate values 
are situationally specific, it is non-sensical 
to provide a single value for central tendency 
as such a value would be meaningless to any 
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specific applied setting.  

Analysis of the Implicit 
Assumptions of the Iacono Thought 

Experiment

Assumption 8 asserts that the poly-
graph is the only source of information about 
who is guilty in a criminal investigation. This 
ignores that fact that individuals can confess 
in contexts other than polygraph examina-
tions, or that other incontrovertible evidence 
of guilt or innocence may be obtained inde-
pendent of the polygraph test.  This was ex-
amined explicitly in Honts (1996) and no dif-
ferences in numerical scores or accuracy rates 
were found between confession confirmed and 
evidence confirmed cases for guilty or inno-
cent subjects.  Interestingly, in Honts (1996) 
none of the innocent subjects were confirmed 
by a confession obtained in the context of a 
polygraph examination.  Assumption 8 is pre-
posterous on its face, but the ITE cannot work 
without it.  

Assumption 9 is that guilty people 
only confess following polygraph tests.  As 
covered in our discussion of Assumption 6, 
we noted that inaccurate and misrepresent-
ed polygraph tests can result in false confes-
sions from innocent subjects. We also noted 
that even guilty subjects who pass polygraph 
tests will sometimes confess later, when faced 
with new or overwhelming evidence.  More-
over, guilty suspects, and occasionally inno-
cent subjects, will confess as part of a plea 
bargain.  Thus, it is obviously true that guilty 
people who fail a polygraph test but either are 
not interrogated, or initially resist an interro-
gation, may confess later.  At least three field 
studies have explicitly taken this into account 
and looked for confirming information in an 
exhaustive sample of cases within a particular 
period of time, and used all of the information 
available not only in the polygraph examina-
tion file, but in the complete police record of 
the case (Honts, 1996; Patrick & Iacono, 1991; 
Raskin et al., 2019).          

Summary of the Analysis of 
Preconditions and Assumptions

Our analysis shows that the assump-
tions of the Iacono thought experiment were 

generally chosen without reference to data or 
professional practice, in the service of devel-
oping what became a highly improbable set of 
preconditions and assumptions leading to a 
specific solution showing that a polygraph test 
with chance accuracy could produce a field 
study with high accuracy rates.  The Iacono 
thought experiment was then transmogrified 
into a normative statement that all field stud-
ies of the CQT were, are, and forever will be 
unreliable and overestimate actually accu-
racy.  We do not believe that this normative 
conclusion is justified unless it can withstand 
empirical examination and falsification.  For 
the remainder of this paper we will refer to the 
hypothesis derived from the Iacono thought 
experiment, that the CQT is no more accurate 
than chance and that all confession criterion 
studies are biased to dramatically overesti-
mate the accuracy of the CQT as the Iacono 
Thought Experiment Hypothesis (ITEH).

Data That Could Falsify the Iacono 
Thought Experiment Hypothesis 

(ITEH)

Just like Galileo’s thought experiment 
concerning falling objects, the ITEH survives 
the test of science based upon a lack of falsi-
fication data in the scientific research.  This 
leads to the question of what data would fal-
sify the ITEH? The remainder of this paper 
addresses several sources of converging data 
that do, in fact, lead to the conclusion that the 
ITEH is false.

Convergence of Experimental and 
Field Data Without Detectable 

Moderator Effects

     Recent studies summarized by 
Hartwig and Bond (2014) have indicated strong 
convergence between experimental and field 
studies in psychological science and interper-
sonal deception detection.  Hartwig and Bond 
explicitly rejected the notion that experiments 
and field research on interpersonal deception 
detection produced significantly different re-
sults.  If the ITEH were true, then polygraph 
testing would have to be qualitatively differ-
ent underlying mechanisms from interper-
sonal deception.  Under such circumstances 
we would expect that laboratory studies of the 
CQT would produce dramatically lower ac-
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curacies than the (according to the ITEH) ex-
aggeratedly high accuracies produced by the 
supposedly unavoidable effects of the ITEH on 
field studies of the CQT.  Existing reviews sim-
ply do not reveal dramatically more accurate 
results in field than in the laboratory (NRC, 
2003; Honts & Thurber, 2019). 

Lack of Differences in Accuracy 
Between Field Studies that Rely on 
the Confession Criteria and Those 

That Do Not.  

Since the ITEH is critically bound to 
the use of confessions as a criterion of confir-
mation of Guilt and Innocence, and the ITEH 
predicts that the confession criterion critically 
biases field studies to show high accuracy, we 
should expect that field studies that included 
or used other methods of confirmation would 
produce accuracies that approach chance lev-
els of accuracy.  Empirically, this is simply 
not the case.  Honts (1996) directly tested this 
hypothesis, rating strength of confirmation on 
a scale that ranged from confessions with the 
generation of new evidence at one end of the 
scale to no confirmation at the other. Honts 
(1996) tested that scale against decision ac-
curacy and against numerical scores.  In di-
rect opposition to the predictions of the ITEH, 
Honts found no effects for the level of confir-
mation. That is, confession confirmed cases 
did not have higher accuracy levels than cases 
that were confirmed by methods other than 
confession (physical evidence and/or witness 
statements).  

Similarly, there are two field studies 
that use paired testing and mathematics to es-
timate accuracy (Ginton, 2013; Mao, Liang, & 
Hu, 2015).  This paired testing approach, while 
not without problems (Iacono & Ben-Shakhar, 
2018), is not dependent upon confessions and 
so is outside the scope of the ITEH.  Estimated 
accuracy rates from the paired subjects stud-
ies converge with data from both laboratory 
and field studies and thus provide support for 
both.

Lack of Concurrence Between 
Wrongful Convictions and Failed 

CQT Polygraph Tests.  

     If the ITEH is correct that CQT poly-
graphs are no more accurate than chance, we 
would expect that, on average, half of the in-
nocent subjects tested in criminal justice set-
tings would produce false positive errors.  In 
the criminal justice settings, innocent subjects 
who failed the polygraph would be exposed to 
interrogation and thus put at risk of false con-
fession. Under such circumstances, we would 
expect there to be a relatively large number 
of false positive outcomes among the ranks of 
the wrongfully convicted.  Bonpasse (2013) re-
viewed the case files of the National Registry of 
Exonerations2  which was founded in 1989 as a 
joint project of the University of Michigan and 
Northwestern University Law School.  Bon-
passe reported finding 215 exoneration cases 
where polygraph tests were involved.  Of those 
215 cases only 23 (10.7%) contained informa-
tion that an Innocent subject had been test-
ed before trial and had failed the polygraph.  
However, there were 44 (20.5%) Innocent sub-
jects who had been tested with the polygraph 
before trial, produced truthful outcomes, but 
those favorable outcomes did not help them 
avoid wrongful conviction.  Although the ITEH 
predicts that false positive errors should be 
common among the wrongfully convicted, they 
occurred at only half the rate of true negative 
outcomes.  Bonpasse also reported that across 
all testing, before and after trial and includ-
ing tests of the immediate suspect and others 
(co-defendants and witnesses), 135 (62.9%) 
of the polygraph test outcome were favorable 
to the wrongfully convicted person while only 
31 (14.4%) produced unfavorable outcomes.  
Data from the wrongfully convicted strongly 
contradicts and thus falsifies ITEH.

Discussion

To our knowledge, there is not a sin-
gle study of the CQT, either laboratory or field, 
that produced chance accuracy rates.  While 
there is a substantial amount of variability be-
tween studies of the CQT, no review has found 

2http://www.law.umich.edu/special/exoneration/Pages/about.aspx
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that laboratory studies are dramatically less 
accurate than field studies (NRC, 2003; Honts 
& Thurber, 2019). Thus, the ITEH complete-
ly lacks empirical substantiation.   Moreover, 
data from the Honts & Thurber (2019) me-
ta-analysis, field studies that do not use the 
confession criterion, and the wrongfully con-

victed all provide evidence that the ITEH is 

false.  The results of the ITE are therefore seen 

as a failed thought experiment that is com-

pletely without empirical support, and which 

should be relegated to the trash heap of histo-

ry’s failed ideas.
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Structural Optimization of Respiration, EDA and Cardio Activity Using a 

Genetic AI

Raymond Nelson

Abstract

This project involved the use of a balanced sample of n=36 field polygraph exams and a 
simple genetic algorithm to compute a weighting function for polygraph signals that would optimize 
the classification of deception and truth-telling. A genetic algorithm is a simple form of machine-
learning that can be used to address complex problems in optimization, classification, search, and 
other data-analytic contexts. EDA accounted for, or explained, 54% of the diagnostic variance in the 
sample data. Cardiovascular activity accounted for 34% of the difference variance in the guilty and 
innocent sample sampling data. The weighting coefficient for respiration was 12%. This weighting 
function is somewhat similar to other weighting functions in the polygraph literature. Although this 
study contributes little additional information to the published knowledge base, in addition to being 
computationally intensive and involving a small sample size, results of this study demonstrate the 
potential use for advanced computing techniques in polygraph research. Computing technology is 
more abundant and less expensive than in the past. Continued interest is indicated for both weight-
ed EDA solutions, and the use of computational machine learning methods in polygraph research.

Polygraph testing, although often re-
ferred to conveniently as a lie detector, does 
not detect or measure lies, but instead relies 
on data that is primarily autonomic.  These 
include respiration movement, electrodermal 
activity, cardiovascular activity and some-
times vasomotor activity. Analysis of poly-
graph data involves a series of functions simi-
lar to other data analytic contexts, including 
feature extraction, numerical transformation 
and data reduction, the use of some form of 
likelihood function, and structured decision 
rules to parse a categorical test result from the 
numerical and probabilistic data. An impor-
tant challenge of any multivariate analysis is 
the calculation, or optimization, of a statistical 
function that specifies an optimal combina-
tion of the different sources of data that will 
achieve a desired objective.

Optimization refers to the calculation 
or computation of a best attainable solution. 
Optimization is a data-analytic approach to 
solution finding, as opposed to solution-find-
ing through conjecture or anecdotal example, 
subjective opinion, or even expert opinion 

(equivalent to subjective opinion and con-
jecture). One way to determine the optimal 
structural combination of sensor data will be 
to test every possible combination. However, 
attempting to test every possible solution will 
be an expensive and time-consuming expedi-
tion. The number of possible weighting coef-
ficients or structural combinations of respira-
tion, EDA, and cardiovascular is potentially 
infinite. To gain insight into the possibilities, if 
weighting coefficients are regarded as normal-
ized decimal proportions (summing to 1) there 
are 166,650 possible combination using only 
two decimals of precision. With the addition of 
a fourth recording sensor (i.e., vasomotor), the 
number of possible structural functions will be 
4,082,925. Three decimals of precision would 
increase the possible combinations exponen-
tially, though with potentially little benefit. 

Another method to optimize the struc-
tural combination of respiration, EDA, and 
cardiovascular activity (or any combination of 
response features) would be to use traditional 
statistical methods such as linear discriminate 
analysis, linear regression or logistic regres-
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sion. A more modern approach to optimization 
and classification problems (also search prob-
lems, and prediction problems) is to use sta-
tistical learning theory (Hastie, Tibshirani & 
Friedman, 2009; James, Witten, Hastie & Tib-
shirani, 2013;), also referred to as machine-
learning (ML) and artificial-intelligence (AI). 

An important difference between AI 
and the traditional statistical approach is that 
the traditional approach involves a researcher 
or scientist who develops a hypothesis (pos-
sible solution) about a possible answer to a re-
search question. The researcher then designs 
an experiment to falsify the hypothesis or to 
compare the hypothesis and null hypothesis 
to determine which is more consistent with 
the observed data. The AI approach allows a 
computing machine to both suggest and test 
numerous possible hypotheses. Thus, the ma-
chine is said to “learn” a solution from its ex-
perience with the data. 

This project involved the use of a ge-
netic algorithm (Goldberg, 1989; Mitchel, 
1996) to compute structural combinations of 
respiration, EDA and cardiovascular activity. 
The optimization question is this: what is the 
best structural weighting for data from each 
of the polygraph sensors? In this context, best 
is defined as achieves the greatest number of 
correct decisions when classifying the sample 
cases as deceptive or truthful.

Data

Data consisted of a small sample of 
n=18 confirmed deceptive and n=18 confirmed 
truthful polygraph cases. The sample cases 
were conducted with a diagnostic polygraph 
format with two relevant questions. Cases 
were conducted by a large metropolitan po-
lice agency, consisted of respiration, EDA and 
cardiovascular activity data, and were con-
firmed through a combination of confession 
and extra-polygraphic evidence. Examinees 
were criminal suspects who authorized the 
examination, including the use of the data in 
anonymous form for research, program evalu-
ation instruction and quality control.  All ex-
ams consisted of three iterations (three charts) 
of the sequence of the test questions. All ex-
aminations consisted of sensors for thoracic 
and abdominal respiration movement, EDA, 

cardiovascular activity and an activity sensor. 

The two relevant question diagnostic 
format is used for event-specific diagnostic 
polygraphs. It includes two relevant questions 
and three comparison questions, along with 
other procedural questions.  When using the 
two relevant question diagnostic polygraph 
format, each relevant question is evaluated 
with the preceding or subsequent compari-
son question depending on which comparison 
question has produced the greater change in 
physiological activity. All exams were conduct-
ed and recorded using the Lafayette LX4000 
polygraph instrument.  

Data were exported from the proprie-
tary binary file format to the NCCA ASCII text 
format using a data sampling rate of 30 sam-
ples per second. Data were then imported to 
the R Language and Environment for Statisti-
cal Computing (R Core Team, 2019) for analy-
sis. All feature extraction, numerical transfor-
mation, data reduction, likelihood calculations 
and decision rules were executed automati-
cally in the R computing environment. The re-
spiratory feature of interest was the reduction 
of respiration activity in response to the test 
stimuli, associated with attempts to conceal 
one’s deception. The EDA feature of interest 
was the change in y-axis value from an on-
set of a positive slope segment to the peak of 
reaction, associated with increased activity in 
the sympathetic division of the autonomic ner-
vous system. For cardiovascular activity data 
the feature of interest was the change in y-axis 
value, also associated with relative blood pres-
sure and activity in the autonomic nervous 
system. 

Feature extraction was performed for 
each sensor for each relevant question (RQ) 
and each comparison question (CQ). Respira-
tion data was measured as the mean of respi-
ration line excursion (RLE; the absolute differ-
ence of each subsequent respiration sample) 
for a one-second moving average from stimu-
lus onset to 15 seconds post stimulus onset 
excluding the data from one second before to 
one second after the recorded verbal answer. 
This measurement is thought to be more ro-
bust against distortions at the point of verbal 
answer and is not influenced by the length of 
the 15 second evaluation window – effects with 
different measurement periods will have a 
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similar metric. EDA reactions were measured 
as the onset of a positive slope segment during 
a response onset window (ROW) from .5 sec-
onds after stimulus onset to 5 seconds after 
the verbal answer to the greatest y-axis (verti-
cal) distance to subsequent peak of reaction 
(onset of negative slope) within evaluation win-
dow (EW) from stimulus onset to 15 seconds 
after stimulus onset. If there was no response 
onset during the ROW a response onset was 
inferred statistically during positive slope seg-
ments using a z-test of the variance of one sec-
ond mean difference of each subsequent EDA 
sample. A response onset was imputed if the 
difference in variance for a two, one-second 
windows exceeded the alpha = .001 bound-
ary. This can be visualized as a substantial in-
crease in positive slope angle within a positive 
slope segment during the ROW. Cardiovascu-
lar activity was extracted by first calculating 
the mean of all cardio sensor samples.

This can be thought of, and plotted, as 
the mid-line between the systolic and diastolic 
peaks. Cardiovascular activity changes were 
then extracted, using the cardio mid-line, us-
ing a procedure similar to the one for the EDA 
data. 

All measurement values were dimen-
sionless. That is, they were not indexed to any 
physical quantity, SI unit , or derived mea-
surement value. Dimensionless values were 
then transformed to objective ordinal rank 
values using a three-point coding scheme [-1, 
0, +1] familiar to field polygraph examiners. 
For each of the recording sensors, extracted 
values for each presentation of each RQ was 
compared to the preceding or subsequent CQ 
depending on which CQ produced the greater 
change in physiological activity. Scores were 
coded as +1 if the change in physiological ac-
tivity was greater at the CQ and were coded 
as -1 if the change in physiological activity 
was greater at the RQ. Tied values (tied ranks) 
were coded as 0. For EDA and cardiovascular 
activity, a greater extracted value was indica-
tive of a greater change in physiology. Howev-

er, because the respiratory feature of interest 
involved the reduction of respiration activity, 
sign values were inverted so that smaller ex-
tracted values were interpreted as a greater 
change in physiological activity. 

Non-parametric rank values were 
then reduced to subtotal scores for each RQ 
through summation. Subtotal scores were 
then summed to achieve a grand total score 
for each exam. The analytic theory of the poly-
graph test postulates that greater changes in 
physiological activity are loaded at different 
types of test stimuli as a function of decep-
tion and truth-telling in response to relevant 
target stimuli (Nelson, 2015, 2016). Under this 
theory, grand total scores of this type can be 
expected to be greater than zero for innocent 
examinees and less than zero for guilty ex-
aminees. The genetic algorithm was used to 
determine the weighting coefficients that can 
be assigned to scores from each of the record-
ing sensors to maximize the number of correct 
classifications.

Analysis

A genetic algorithm can be thought of 
as a Monte Carlo method, involving the use of 
random numbers to create numerous possible 
solutions to a question or analytic problem. 
[See Eckhardt (1987), Metropolis, (1987), and 
Metropolis and Ulam (1949) for more informa-
tion on Monte Carlo methods]. A genetic al-
gorithm consists of simple rules such as the 
following:

1. Creation of numerous (say, m=1000) 
random possible solutions for the 
structural weighting of respiration, 
EDA and cardiovascular activity data,

2. Testing the effects of each possible 
solution with all of the sample cases,

3. Survival of the best solutions (natu-
ral selection) – discard the 50% that 
performs weakest and keep the 50% 
that achieves the best classification,

 1 International System of Units (French: Système international d’unités, abreviated as SI). SI base units include the 
following: the meter as a measurement of length or distance, the kilogram as a unit of mass, the second as a unit of time, 
the ampere as a unit of electric current, the kelvin as a unit of temperature, the candela as a unit for luminosity, and 
the mole as a unit for the quantity of a substance. All other measurement units are derived from these SI base units. 
Measurement of any quantity requires both a physical quantity to measure and a defined unit of measurement
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4. Split each of the surviving solutions 
into two parts and randomly connect 
them (recombination) to make a new 
iteration of m possible solutions for the 
structural weighting of the sensor data 
– now informed by the previous experi-
ence,

5. Introduce random variation (muta-
tion) to a small portion of the new so-
lutions – to potentially find better so-
lutions that were not included in the 
previous solutions,

6. Repeat steps 2-5 a large number of 
times,

7. Stop at some point – either after a 
specified number of iterations (say, 
30,000), or in response to the achieve-
ment of a stated objective (e.g. a de-
sired level of accuracy), or when the 
structural model stops improving, and 
finally,

8. Choose the structural solution that 
achieves the greatest effect size

Results 

The genetic algorithm used objective 
integer-level rank order input data and pro-
duced the weighting function shown in Table 
1. EDA accounted for or explained over half 
of the diagnostic variance in the sample data. 
Cardiovascular activity accounted for approxi-
mately one-third of the difference between the 
guilty and innocent sample sampling data. 
Respiration data explained slightly over 10% 
of the diagnostic variance. This weighting 
function is somewhat similar to other weight-
ing functions in the polygraph literature, in-
cluding the discriminate function reported by 
Nelson, Krapohl and Handler (2008) in the 
development of the Objective Scoring System 
Version-3, also shown in Table 1.

Discussion

This project involved the use of a bal-
anced sample of n=36 field polygraph exams 
and a simple genetic algorithm to compute a 
weighting function for polygraph signals that 

would optimize the classification of decep-
tion and truth-telling. A genetic algorithm, 
and other ML techniques, can achieve a very 
close approximation of an optimal solution 
with only a few thousand (sometimes many 
thousand) iterations. Response features in 
this study were coded with an objective rank 
method using positive and negative values [-1, 
0, +1] by comparing responses to relevant and 
comparison stimuli. Input data were inten-
tionally naive as to the relative importance of 
the data from different recording sensors, and 
the algorithm output is a weighting function 
that will optimize the diagnostic variance of 
the extracted data.

EDA data accounted for over 50% of 
the variance while cardiovascular data ac-
counted for approximately 1/3 of the diagnos-
tic variance. Respiration data accounted for 
the smallest portion of diagnostic variance. 
This weighting coefficients are similar to other 
published information. Some manual scoring 
protocols approximate this weighting function 
by doubling EDA scores.

The procedures in this study differ 
from those commonly used scoring in field 
polygraph programs, in which manual/visual 
feature extraction continues to be a dominant 
method for the interpretation of polygraph test 

Table 1. Weighting function.
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data. It also differs from most studies on auto-
mated algorithm development in its use of or-
dinal integer-level numerical coding. Results 
from this study add additional confirmation 
to existing knowledge on the relative impor-
tance of polygraph signals, and may be helpful 
to better understand polygraph scoring meth-
ods such methods such as the OSS (Krapohl, 
2002; Krapohl & McManus, 1999) and ESS 
(Nelson, Krapohl & Handler, 2008; Nelson et 
al., 2011; Nelson 2017). 

Limitations of this project include the 
small sample size, and the limited information 
available about the case confirmation. Despite 
the sample size, results from this study ap-
pear to be consistent with other information 
on the structural weighting of polygraph sig-
nals. Another, limitation of this project, re-
lated to the small sample size, is the absence 
of a hold-out sample. No attempt was made, 
during this project, to test the effectiveness of 
the weighting function with other data. Also, 
no attempt was made to test the effectiveness 
of the weighting function with the study input 
data, as doing so would incur a risk of over-fit-
ting a conclusion with the small input sample, 
and thereby overestimating its effectiveness. 
Another potential limitation, related to the use 
of Monte Carlo methods with small sample siz-
es, is that replication of these results may be 
subject to both sampling variation and Monte 
Carlo variation. This limitation is mitigated by 

the results of other studies on signal weighting 
in manual scoring methods – such as those 
already cited, the one by Nelson and Handler 
(2018) – that demonstrate the effects of weight-
ing the EDA data more than the other sensor 
data. A final limitation of this study is that it is 
computationally intensive. However, comput-
ing power is much more abundant and much 
less expensive than in the past. Thoughtful 
use of computing and analytic technologies 
can help to improve and advance the science 
and field practice of polygraphic credibility as-
sessment testing.  

In consideration of the volume of ex-
isting information, results of this study are 
not surprising, and the results of this study 
contribute little new knowledge to the science 
and field practice of polygraph testing. Optimi-
zation of respiration, EDA and cardiovascular 
activity has previously been demonstrated us-
ing a variety of methods, including logistic re-
gression and discriminate analysis and other 
methods. Monte Carlo methods have been de-
scribed in previous polygraph studies. These 
results are interesting because they serve to 
add further confirmation of extant knowledge 
regarding polygraph signals, and it introduces 
and demonstrates the potential use of ML/AI 
techniques in polygraph studies. Continued 
interest is indicated for both weighted EDA 
solutions, and the use of computational ma-
chine learning methods in polygraph research. 
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PCSOT Instant Offense Polygraph Exams:

A Comparison of the Two-Question and Four-Question Test Formats

Erika Thiel1 and 

Raymond Nelson2

Abstract

The Center for the Treatment of Problem Sexual Behavior in Connecticut administers post-

conviction sex offender testing to offenders who are on state and federal probation or parole.  Over 

the years the examiners have switched the methods they use to administer the instant offense exam.  

All exams in this comparison were scored with the Empirical Scoring System or the Empirical Scor-

ing System, Multinomial.  The methods that were used were either a 2- question diagnostic test, or 

a 4-question diagnostic test.  Each method used grand total scoring per series.  Outcome compari-

sons for the 2-question diagnostic test and the 4-question diagnostic test showed a reduction in 

the number of inconclusive results by 55%, a difference that was statistically significant (p = .006).  

The reduction of inconclusive results observed in this analysis provides support for the hypothesis 

that the 4-question test is a more powerful alternative than the 2-question test.  It is suggested that 

polygraph examiners consider administering instant offense testing use a 4-question diagnostic test 

with a grand total scoring method to reduce their inconclusive rate.

1 Erika Thiel became the Polygraph Manager of CTPSB in July 2015 and is employed in this position to date. She is also 
an elected member of the APA Board of Directors. 

2 Raymond Nelson research specialist with Lafayette Instrument Company (LIC) and an elected member of the APA Board 
of Directors. 
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The Center for the Treatment of Prob-
lem Sexual Behavior (CTPSB) is a part of The 
Connection Incorporated (TCI) in Connecti-
cut.  The program focuses on the treatment 
of sexual offenders who are on state or federal 
probation, or state parole.  The program takes 
a collaborative approach in the treatment of 
sexual offenders (Center for Sex Offender Man-
agement, 2000).  This is an inclusive process 

between supervising officers, clinical staff, the 

polygraph examiners, and other involved pro-

fessionals.  The collaborative approach allows 

all parties to be involved and coordinate with 

each other in the treatment, supervision and 

behavioral monitoring of persons convicted 

of sexual offenses, with the goal of promoting 

both healthy living and community safety.
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The instant offense polygraph is a type 
of polygraph used in post-conviction sex of-
fender testing (PCSOT).  The instant offense 
polygraph is given to clients who are denying 
all, or part, of the offense for which they were 
convicted or pleaded guilty.  Instant offense 
polygraphs are often given to clients when 
they first begin treatment.  In treatment, the 
results of an instant offense polygraph can 
help the clinical staff assist the client through 
their denial barriers.  For supervising officers, 
the result of the instant offense polygraph 
can help determine a referral and placement, 
within treatment and within the supervising 
agency, that is appropriate to the individual’s 
needs.  In 2015, the polygraph team analyzed 
the usefulness of the Empirical Scoring Sys-
tem (ESS) and began using ESS (Nelson & 
Handler, 2010; Nelson & Handler, 2012; Nel-
son, Handler, Shaw, Gougler, Blalock, Russell, 
Cushman & Oelrich, 2011). All exams have 
been analyzed with the ESS since that time.  
Later training and program development ac-
tivities led to additional changes with the poly-
graph test format used with instant offense 
polygraph.

Method and Results

In July 2015 the polygraph team was 
using a two-question diagnostic test format.  
Clients were administered multiple series, 
during one exam, if there were multiple as-
pects that the client was denying about their 
offense.  For example, series one may have fo-
cused on direct physical sexual contact, series 
two may have focused on verbal force or resis-
tance, and series three may have focused on 
physical force or resistance.  There were never 
more than three series administered in an at-
tempt to avoid testing fatigue and unusable 
data.  Each series used grand total scoring 
to determine the outcome for that series.  All 
information and results were reported in the 
polygraph report that was shared with clinical 
staff and supervising officers.  

Prior publications described a 
four-question diagnostic exam with grand to-
taling (Nelson, 2018; Raskin, Honts, Nelson & 
Handler, 2015; Raskin & Honts, 2002; Raskin 

& Kircher, 2014). Published information sug-
gested this may be a more powerful test for-
mat than the two-question diagnostic test. 

Starting September 1, 2016, the poly-
graph team began to administer the four-ques-
tion diagnostic exam for the instant offense 
polygraph.  The questions would focus on the 
totality of the offense and details of the allega-
tion that the client was denying. This means 
that in one series the questions may focus on 
direct physical contact, verbal force or resis-
tance, physical force or resistance and any 
other aspect. When using the four-question 
diagnostic format these questions are treat-
ed as non-independent. That is, it is expected 
that past behavior that could affect responses 
to one question may also influence respons-
es to other questions.  If there were not four 
different testable aspects of denial, then ques-
tions were formulated using a “who,” “what,” 
“where” and “when” approach.  In switching to 
this method, there has yet to be an issue with 
coming up with four questions based on the 
client’s denial and the victim statement.

The Empirical Scoring System, Mul-
tinomial (ESS - M; Lafayette, 2018; Nelson, 
2017a) was updated in the Lafayette Instru-
ment Software (version 11.8).  The polygraph 
team updated the software and switched to 
ESS - M on September 17, 2018. There were 
no changes made to the default preferences 
in the system.  The team changed their cut 
scores in accordance with the scoring method.  
ESS cut scores for grand total scores using the 
two-question test were alpha = .05 for decep-
tion (-4) and alpha = .1 for truth-telling (+2). 
For ESS-M the numerical cut scores for grand 
total scores are alpha = .05 for deception (-3) 
and alpha = .05 for truth-telling (+3).  Con-
fidence intervals reported by Nelson (2017b) 
showed no significant differences in decision 
accuracy or inconclusive outcomes for the 
ESS and ESS-M. There were no other changes 
made to the administration or analysis of the 
four-question diagnostic exam for the instant 
offense.  

Table 1 below show the outcomes per 
test type and scoring system.  The two-ques-
tion testing dates were from July 2015 through 
August 2016.  The four-question testing data 
collection dates are September 2016 through 
August 2019.
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Table 1- Categorical results for the two-question and four-question Instant Offense Testing

Without knowledge of the case status, 
statistical comparison of DI and NDI results is 
potentially misleading, as these outcomes can 
be assumed to be non-random (if the theory 
and practice of polygraph are valid). Observed 
outcomes will be informed by prior base-rates 
which may be influenced by systemic factors 
within the judicial system, probation and pa-
role systems, and treatment system. In other 
words, observed differences in DI and NDI 
could possibly result from differences in refer-
rals (i.e., differences in examinees), or other 
programmatic factors (e.g. judicial accuracy, 
or clinical resolution of denial), during the 
time periods of data collection. These differ-
ences might also affect the observed rate of in-
conclusive results. 

Previous studies have not suggested 
differences in ESS and ESS-M accuracy. Test-
ing the level of significance of observed differ-
ences requires an ability to characterize the 
difference as random under the null hypoth-
esis. Statistical comparison of unusable data 
is also not a completely reasonable topic for a 
statistical hypothesis test because the ratio-
nale involves insufficiently differentiated fac-
tors as to why the change in test format would 
interact with this experience. Inconclusive 
results – not due to unusable data – may be 
thought of as related to differences in the poly-
graph test format with the null-hypothesis that 
there is no difference. Exact reasons for incon-
clusive results are unknown and therefore un-
controlled. We therefore assumed, under the 

null hypothesis, observed differences in incon-
clusive rates can be characterized as random. 
Whereas uncontrolled variation represents 
one degree of freedom, attempts as analysis or 
interpretation of NDI and DI results involves 
multiple degrees of freedom (e.g., TP, FN, FP 
and FN rates in addition to the unknown base 
rate or criterion state of each case). For these 
reasons, statistical tests were performed only 
on the inconclusive outcomes. 

A bootstrap hypothesis test of 100,000 
iterations showed that the observed difference 
in inconclusive rates was statistically signifi-
cant (p = .006). The four-question diagnostic 
test had significantly fewer inconclusive re-
sults than the two-question diagnostic test. 

Discussion

Changing the polygraph testing for-
mat from a two-question diagnostic exam with 
multiple series to a four-question diagnostic 
exam with one series reduced the number of 
inconclusive results by 55% - a significant 
reduction.  A reduction of 46% was also ob-
served in the number of tests that produced 
unusable data - though it is not completely 
clear as to why this occurred.  Another analy-
sis of outcome production should be done in 
another year when more information becomes 
available.  

From the results listed, a four-question 
diagnostic reduces the proportion of inconclu-



96

PCSOT Instant Offense Polygraph Exams

Polygraph & Forensic Credibility Assessment , 2019, 48 (2)

sive results in comparison to a two-question 
diagnostic test.  This is possibly due to better 
target selection when asking four questions as 
opposed to two.  It is also possibly due to the 
fact that the four-question diagnostic format 
provides more data with which to classify the 
results as deceptive or truthful.  The results 
also show a decrease in the amount of times 
unusable data was collected.  This is possibly 
due to the fact that there are fewer test charts 
and therefore less test fatigue.  It may also be 
speculated that a four-question diagnostic 
may lessen the chance of a false negative re-
sults due to the test fatigue and the exposure 
to practicing the test by running multiple se-
ries with a two-question diagnostic test.  Be-
cause the rationale is speculative and as to 
why an effect for unusable data would inter-
act with the test format, no statistical test was 
conducted on this observed difference. 

A limitation can be noted at this point 
– in that to the extent that referral (examinee) 
differences and program differences, during 
the two time periods of data collection, may 
have influenced DI and NDI outcomes, these 
differences may have also played a role in the 
observation of inconclusive results.  Another, 
limitation of this study is that it is unable to 

attribute the observed differences in inconclu-
sive results to significant improvements in test 
sensitivity, specificity or both.  Regardless of 
this limitation, these results may be of interest 
to other professionals.  To the extent that in-
conclusive test results are the result of uncon-
trolled (i.e., random)  variation, The reduction 
of inconclusive results observed in this anal-
ysis provides support for the hypothesis that 
the 4-question test is a more powerful alter-
native than the 2-question test.  These results 
should be compared with the results of other 
studies. 

The polygraph examiners of CTPSB 
have assessed their data and will continue the 
use of the four-question diagnostic test for in-
stant offense polygraphs with the ESS-M scor-
ing method to collect further data for analysis.  
Based on the experience of this team, it is sug-
gested that a four-question diagnostic test may 
help reduce the rate of inconclusive results for 
other examiners administering instant offense 
exams in PCSOT programs.  Future studies 
should attempt to compare the sensitivity and 
specificity rates of these polygraph formats in 
addition to their inconclusive rates. 



97

Thiel, Nelson

Polygraph & Forensic Credibility Assessment , 2019, 48 (2)

References

Center for Sex Offender Management. (2000). The Collaborative Approach to Sex Offender 
Management. Available online at [https://www.csom.org/pubs/collaboration.html].

Lafayette Instrument Company (2018).  Empirical Scoring System, Multinomial.

             https://lafayettepolygraph.com/ess-11_8.pdf.

Nelson, R. (2018). Credibility assessment using Bayesian credible intervals: a replication study 
of criterion accuracy using the ESS-M and event-specific polygraphs with four relevant 
questions. Polygraph & Forensic Credibility Assessment 47(1), 85-90.

Nelson, R. (2017a). Multinomial reference distributions for the Empirical Scoring System. Polygraph 
& Forensic Credibility Assessment Testing 46(2), 81-115.

Nelson, R. (2017b). Updated Numerical Distributions for the Empirical Scoring System: An Accuracy 
Demonstration with Archival Datasets with and without the Vasomotor Sensor. Polygraph & 
Forensic Credibility Assessment Testing 46(2), 116-131.

Nelson, R. & Handler, M. (2010). Empirical Scoring System. Lafayette Instrument Company.

Nelson, R. & Handler, M. (2012). Using Normative Reference Data with Diagnostic Exams and the 
Empirical Scoring System. APA Magazine, 45(3), 61-69.

Nelson, R., Handler, M., Shaw, P., Gougler, M., Blalock, B., Russell, C., Cushman, B. & 

Oelrich, M. (2011). Using the Empirical Scoring System. Polygraph, 40, 67-78.

Raskin D.C. & Honts, C.R. (2002). The comparison question test.  In M. Kleiner (Ed.), Handbook of 
polygraph testing.  London: Academic (1 – 49). 

Raskin, C. R. Honts, & J. C. Kircher (Eds.), Credibility Assessment: Scientific Research and 
Applications. San Diego, CA: Elseveir/Academic Press.

Raskin D. C., Honts, C. R, Nelson, R., & Handler, M. (2015). Monte Carlo Estimates of the Validity of 
Four Relevant Question Polygraph Examinations. Polygraph, 44 (1), 1-27. 

Raskin D. C. & Kircher J.C. (2014). Validity of Polygraph techniques and decision methods.  In D. 
C.  Raskin, C. R. Honts, & J. C. Kircher (Eds.), Credibility assessment: Scientific research and 
applications (pp. 63-129). San Diego, CA, US: Elsevier Academic Press.



98

A Brief Discussion of the Lower Latency Limit

Polygraph & Forensic Credibility Assessment , 2019, 48 (2)
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Abstract

Polygraphy and the larger field of psychophysiology share an interest in extracting meaning-
ful information from bodily signals.  The electrodermal response is one of those signals, and one 
of the most researched.  Best estimates suggest that in polygraphy, the electrodermal response ac-
counts for about half of the diagnostic information available in the charts, and understanding its 
characteristics is crucial to accurate analysis by polygraph professionals (Kircher & Raskin, 1988).  
In a recent instruction article, Krapohl and Nix (2019) challenged a common assumption among 
many polygraph examiners that the minimum latency of an electrodermal response in polygraph 
testing was 0.5 seconds.  Here we summarize specifically the current state regarding electrodermal 
response latency.  We continue by discussing methods for standardizing question presentations to 
permit polygraph examiners the ability to enjoy a higher reliance on latency information.  

1Former APA President and Editor, currently with the Capital Center for Credibility Assessment.

2Former APA President and current Director.  Mr. Dutton is Vice President of the Capital Center for Credibility Assessment.

3Certified polygraph examiner through the South Carolina Law Enforcement Division, currently with the City of Charleston 
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the views of past or current employers, or the APA.  The authors have no financial interests in any product or service 
related to this article.  Questions and comments can be sent to the first author at APAkrapohl@gmail.com.

Introduction

Electrodermal activity is used in both 
psychophysiological research and polygraph 
testing.  Its utility stems from the generally es-
tablished and accepted conclusion that EDA 
provides a reliable proxy for arousal (Bouc-
sein, 2012), and that electrodermal response 
amplitude covaries with the arousal value of a 
stimulus, though not linearly.  

There are three characteristics of a 
stimulus that will induce a phasic electroder-
mal arousal: novelty, intensity, and salience 
(Dawson, Schell & Filion, 2007).  Salience of 
a stimulus can have any number of sources, 
including those that are associated with the 
act of deceiving.  Polygraph testing entails the 
manipulation of the salience of test items, and 
because arousal corresponds with salience, 
patterns of arousal permit inferences regard-
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ing the salience value of the test questions.  
Test questions that challenge an examinee’s 
goal of passing the test may garner salience in 
this way (Khan, Nelson & Handler, 2009).  

An additional value of using electro-
dermal activity (EDA) is that the underlying 
mechanisms are well understood by scientists.  
A thorough summary of electrodermal activ-
ity as it applies to polygraphy was published 
in a previous American Polygraph Association 
(APA) journal by Handler, Nelson, Krapohl, & 
Honts (2010).

All physiological responses have some 
period of delay between the stimulus and the 
beginning of the reaction.  This is true of EDA, 
as well.  Estimates of electrodermal response 
(EDR) latency can be traced to some of the ear-
liest published articles on this phenomenon 
at about 1 – 3 seconds (Tarchanoff, 1890, as 
cited by Peterson & Jung, 1907).    

Our present interest regards the lower 
limit of EDR latency in polygraph testing: How 
early can an EDR begin after the onset of the 
question and be reliably associated with the 
content of that question?  EDR minimum la-
tency matters in polygraphy, just as it does in 
psychophysiological research.  EDRs must be 
excluded from scoring if they clearly could not 
come from the test stimuli, calling for rules 
about what constitutes a timely response.  

There is a prevailing assumption in 
polygraphy that EDRs beginning 0.5 seconds 
or later after question onset can be associat-
ed with the content of the test question, and 
therefore are scorable.  The documentary trail 
leads to Raskin and his collaborators at the 
University of Utah as the source.  The earliest 
articles we found to suggest 0.5-second laten-
cy for polygraph were by Podlesny and Raskin 
(1978), and Raskin (1979).  The first mention 
of the 0.5-second minimum EDR latency to 
appear in the polygraph practitioner literature 
was 20 years ago, by Bell, Raskin, Honts & 
Kircher (1999).  Raskin and his collaborators 
have long been highly influential in the field 
of polygraph for their substantial contribu-
tions to evidence-based practices, and as such 
the 0.5-second latency gained widespread ac-
ceptance.  It did not only affect manual poly-
graph scoring: 0.5-second EDR latency is pro-
grammed into the OSS-3 algorithm (Nelson, 

Krapohl & Handler, 2008) as well as the CPS 
algorithm (Kircher & Raskin, 2000).  

The most widely read polygraph text-
books offer inconsistent minimum periods for 
EDR onset latency. Abrams (1992) suggests 
any response after the first few words of the 
test question can be used.  Reid and Inbau 
(1977) and Matte (1996) did not offer a fixed 
value.  Krapohl and Shaw (2015) repeat the 
0.5-second minimum latency.  The 2017 ver-
sion of the National Center for Credibility As-
sessment (NCCA) pamphlet on scoring states 
“3.6.2.  The response onset window for the 
ED (electrodermal) and CV (cardiovascular) 
channel is from stimulus onset to five seconds 
beyond the examinee’s answer” (parentheti-
cals added).  Even among those who did offer 
recommendations for minimum EDR latency, 
none cited the evidence on which their recom-
mendations were based.  

We undertook a literature review to the 
question we posed about EDR onset latency 
and found it has been well researched over the 
past 50 years.  There did appear to be sub-
stantial evidence on which to base an EDR 
onset latency minimum. The research simply 
had not been translated into practical advice 
for polygraph practitioners.  The limits of the 
nervous system and the sweat glands, and the 
type of stimuli used in polygraph testing make 
a strong case that the 0.5-second EDR latency 
standard is untenable.  The following provides 
the basis for this assertion.

Brief Physiological Foundation

In the central nervous system, electro-
dermal activity (EDA) is largely mediated by the 
hypothalamus, a brain structure principally 
responsible for the sweating response to both 
thermoregulatory requirements and emotional 
arousal among many functions, though there 
are also other less impactful contributors (See 
Boucsein, 2012).  Signals from the hypothala-
mus travel via sympathetic pathways to pre-
ganglionic sudomotor neurons.  From there 
the signals are transferred through postgangli-
onic neurons to the sweat glands.  The sweat 
glands release fluids through ducts towards 
the skin’s surface.  Sweat is a good conductor 
of electricity, and momentary fluctuations in 
sweat availability on the skin’s surface change 
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the conductance of electricity, and through 
circuits and filtering produce the physiological 
channel called EDA.

The latency of EDRs depends in large 
part on how long it takes to communicate the 
signal from the brain to the eccrine glands, 
and for the eccrine glands to move sweat to 
the surface of the skin.  Compared to other 
neurons, the nerve fibers that serve to com-
municate the electrical signal to the sweat 
glands are relatively slow.  The best estimate 
is that it takes about 1.1 seconds for a nerve 
impulse to travel from central activation to the 
eccrine glands at the fingers (Lim, Seto-Poon, 
Clouston & Morris, 2003).  At the sweat glands 
there is also a relatively long latency in the 
neuroeffector transfer to the sweat glands of 
0.348 seconds (Kunimoto, Kirnö, Elam & Wal-
lin, 1991).  This produces a total average time 
of about 1.5 seconds from the activation of 
the EDR signal in the brain to the initiation of 
movement of sweat out of the eccrine glands.  
We were unable to locate a time estimate for 
the flow of sweat from the eccrine sweat glands 
to the measured decrease in resistance at the 
recording site.  Ignoring this period and that 
for processing the information in the brain to 
initiate the response, the intervening physiol-
ogy is responsible for an average of about 1.5 
seconds of EDR latency.  Edelberg (1972) put a 
bottom limit of EDR latency at 1.2 seconds for 
even the fastest responders.  Similar minima 
have been reported using different methodolo-
gies (Barry, 1990; Lockhart, 1972; Surwillo, 
1967; Venables & Martin, 1980).

More recently, using state-of-the-art 
computerized equipment with exquisite tem-
poral resolution, Sjouwerman and Lonnsdorf 
(2019) found average EDR latency of 1.92 
seconds to auditory startle prompts with a 
sample of 281 young adult participants.  They 
did not report the minimum latency, but their 
graphed data suggest a lower limit near 1.3 
seconds for a limited number of EDRs from 
the fastest of their research participants. Sjou-
werman et al. (2019) concluded their findings 
were consistent with those of earlier research-
ers using analog instruments to investigate 
EDR latency.  Startle prompt-induced EDRs 
have the shortest onset latencies a person can 
produce (Sjouwerman et al., 2019).

Variations in latency minima may re-

sult from differences in transit distances from 
brain to fingers, the subject’s age, health, skin 
temperature (Boucsein, 2012), and whether 
the stimuli are visual, auditory or tactile (Sjou-
werman et al., 2019.  Because polygraphy al-
most always uses auditory presentations of 
test questions we have restricted this review 
to addressing auditory stimuli.

Polygraph Stimuli

Startle prompts (e.g., bursts of 105 
dB white noise) require no cognitive interpre-
tation to elicit EDRs.  Not so with polygraph 
questions.  In polygraphy, the interest is not 
the reaction to the physical sound of the test 
question, but how the examinee reacts to the 
semantic content of the question.  The EDR de-
lay, then will be influenced by how quickly the 
question is presented and how many words of 
the question have been given before the exam-
inee has sufficient information to know what 
the question is.  At what point the examinee 
comes to know the meaning of the question 
may vary by examinee and question.  

Polygraph test questions are typically 
about 3 to 20 words in length.  All questions 
are normally rehearsed with the examinee at 
least one or more times before testing to en-
sure the examinee understands their mean-
ing.  The review process may also prime the 
examinee to questions having more personal 
salience.

As stated previously, to respond to the 
meaning of the test questions during testing 
the examinee must hear enough of the ques-
tion to know what the question is, or at least 
what kind of question it is.  In some cases, 
an examinee can recognize the kind of ques-
tion having heard only the initial word.  Other 
cases may require more words for the exam-
inee to know which question it is, such as 
when relevant question covering different is-
sues share an initial phrase like “Apart from 
what you told me..” or “In the past two years 
have you…”, or the more lengthy “Other than 
what you told me, in the past two years have 
you…”.  If the average person speaks at a rate 
of three words per second, examinees may 
come to ascertain the meaning of a test ques-
tion from 0.3 to more than 4 seconds after the 
question begins.  After processing the ques-
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tion, the central nervous system may initiate 
a signal.  Once initiated, the autonomic ner-
vous system takes an average of 1.5 seconds 
to induce the sweat glands to release sweat to 
the skin surface, as the previous section dis-
cussed.  With few disputable assumptions the 
average EDR would be expected to begin more 
than 1.8 seconds from question onset for the 
average examinee, with some individual dif-
ferences.  Other factors, such as cooler skin, 
can be expected to delay it further (Maulsby & 
Edelberg, 1960).  

Based on the available evidence, the 
average minimum EDR onset latency for poly-
graph questions should be more than 1.8 sec-
onds for most healthy and responsive exam-
inees who recognize the test question at the 
presentation of the first word of the question.   
This estimate approximates the Sjouwerman 
and Lonnsdorf (2019) findings of an average 
of 1.92 seconds latency for auditory startle 
prompts.  Of course, these are only averages 
and assume immediate recognition of the test 
question.  Many individuals would be expected 
to have longer, and sometimes substantially 
longer EDR onset latencies.  Even under opti-
mal conditions, human physiology constrains 
EDR onsets for the fastest responders to not 
less than 1.2 seconds, however, EDRs taking 
place this quickly would be statistically rare.  

Problems of Latency Measurement in 
Polygraph Testing

A casual inspection of field polygraph 
charts may lead to the conclusion that EDR 
latency can be shorter than one second, con-
trary to the established limits of the nervous 
system.  We suggest there are two alternate 
explanations for such a finding, both due to 
human factors. 

The first likely source of short laten-
cies could be when examinees can see or hear 
their examiner preparing to ask a question.  If 
examiners unconsciously clear their throats, 
take an audible deep breath, type on the key-
board, or shift in their chairs just before ask-
ing test questions, examinees can hear the ex-
aminer and initiate an anticipatory response 
without having heard any of the test question.  
That early reaction would be due to an extra-
neous noise, not because the examinee knows 
which question is about to come. Similarly, 

human visual fields are about 210 degrees, 
sometimes permitting examinees to see their 
examiners moving their hands to the comput-
er keyboard as they prepare to timestamp the 
presentation of the question.  Again, an early 
reaction from the examinee can be triggered 
by the examinee being alerted that something 
is about to happen.  In these instances, exam-
iners themselves may unwittingly create pre-
mature EDRs. 

The second source is the differing abil-
ity of examiners to mark the polygraph record-
ings when a test question is asked.  Examin-
ers do not always precisely match the onset of 
their speaking with the key press that time-
stamps the beginning of the test question in 
the data.  Consequently, latency information 
can be distorted.  It can be difficult to deter-
mine whether a very short EDR onset period 
is real or merely a reflection of the examiner’s 
error in marking the true question beginning.

Neither of these problems exist in mod-
ern day research settings because scientists 
take care to automate the stimulus presenta-
tions and timestamping.  These two measures 
ensure standardized stimulus presentations 
and eliminate a source of recording error.  It 
is not as common however, for polygraph ex-
aminers to undertake the same safeguards.  
Currently most examiners read the test ques-
tion to the examinee themselves and mark 
the question presentation in the data manu-
ally.  The polygraph method for verbal ques-
tion presentation and manual event marking 
has not changed since the 1920s.  This is not 
due to a lack of opportunity to exploit auto-
mation:  Almost all digital polygraphs already 
offer options for automated question presenta-
tion with accompanying event marking on the 
charts.  These features offer a vastly improved 
method for standardization and event timing.  
For polygraph examiners to protect against 
misattributing premature EDRs to test ques-
tions they could automate question presenta-
tions.  For additional protection, the use of au-
dio headphones to present the test questions 
could block out extraneous sounds that can 
come from testing at sites where noises are 
otherwise difficult to control.  And finally, au-
tomated test question presentation might be 
associated with increased decision accuracy 
(Honts & Amato, 1999).
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Summary

Psychophysiological research points to 
a mean delay between the onsets of a startle 
stimulus and an associated EDR of just un-
der 2 seconds.  The shortest of EDR latencies 
cannot be shorter than 1.2 seconds under any 
conditions.  Because polygraph testing uses 
stimuli that require a degree of interpretation 
beyond simple alerting, typical latencies might 
be expected to be longer in the polygraph con-
text.  We suggest the average minimum EDR 
onset for polygraph examinees should be 
slightly longer than about 1.8 seconds from 
the beginning of the question presentation.  
Because it is exceedingly difficult to determine 
precisely when polygraph examinees recognize 
the meaning of test questions, the maximum 
EDR latency is a question with no clear an-
swer.  It is reasonable that examinees vary in 
the speed in which they can recognize ques-
tions, and that individual differences might 
prohibit a fixed maximum onset latency that is 
appropriate for all examinees.  An alternative 
approach may be to consider intra-examinee 
consistency in latency rather than inter-ex-
aminee averages.  Nonetheless, it can be stat-
ed with confidence that EDR latencies shorter 
than 1.2 seconds cannot be elicited by the test 

question, and onset delays approaching this 
extreme should be rare.    

Meaningful information regarding EDR 
latency in polygraph testing is hampered by 
the imprecise means in which stimulus onsets 
are typically established – from key presses 
by humans who concurrently attend to other 
tasks.  A practical solution for polygraph ex-
aminers is to avail themselves of existing poly-
graph software to present the test questions 
and timestamp the data accordingly, leaving 
the examiner’s attentional resources for other 
demands, such as monitoring the examinee.  
Examinees may react in anticipation if they 
see or hear the examiner preparing to present 
the test questions and examiners should ad-
just their procedures to avoid this possibility.  
The use of audio headphones to automatically 
present the test questions would have an ad-
ditional benefit in the protection against exter-
nal sounds that may elicit EDRs.

Polygraph examiners can have more 
confidence in the interpretation of EDRs if 
they have undertaken steps to ensure laten-
cy information has been faithfully recorded.  
Suggestions in this paper are offered to help 
avoid errors regarding an EDR’s timing, and 
hence, its association with the test question.
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Literature Survey of Structural Weighting of Polygraph Signals: 

Why Double the EDA?

Raymond Nelson

Abstract

Electrodermal activity (EDA) is a useful and important source of information in psychophysi-

ological detection of deception (PDD) testing. A variety of methods have been used to evaluate the 

relative contribution of EDA data, and results have been consistent throughout several decades of 

research in different laboratories.  Information indicates that EDA data contributes approximately 

half of the information used to make effective classifications of deception or truth-telling in the CQT 

paradigm. This paper is a survey of existing literature on the correlation and weighting coefficients 

for EDA and other recorded data relative to PDD. 

Introduction

Why double the electrodermal activity 
(EDA) scores in a polygraph setting? EDA is 
a useful and important source of information 
in psychophysiological detection of deception 
(PDD) testing. Scientific experiments are often 
used to study the strength of association be-
tween an unknown phenomena of interest and 
some observable data that serve as a proxy for 
the unknown phenomena of interest. In addi-
tion to studying the strength of association, 
test developers are also concerned with deter-
mining the optimal weighted combination of 
the measures/data that will maximize test ef-
fects such as test sensitivity, and specificity, 
or false-negative and false-positive errors. In 
the literature review that follows, summarized 
in Table 1, one can trace the development of 
the technology and study designs leading to 
the currently used weighting coefficients for 
EDA and other sensor data in the PDD test-
ing context. Table 1 contains the studies in 
temporal order, the fitting technique type, the 
coefficients for the non-normalized data and 
the coefficients for the normalized data which 
leads to the current weighting system.

Methods

Published literature was surveyed for 
information relating measures of respiration, 
electrodermal (EDA), cardiovascular activity 
and vasomotor activity to psychophysiologi-
cal detection of deception (polygraph) test out-
comes. These signals have emerged as useful 
in the PDD testing context because they have 
been shown to be correlated with differences 
in deception and truth-telling, while contrib-
uting unique or additional variance to accu-
rate classifications when used in combination. 
Criterion coefficients of interest, which de-
scribe the relationship between the data and 
the criterion state of deception or truth-telling, 
are summarized in Table 1. A number of dif-
ferent types of coefficients have been reported 
in various studies, including correlation coeffi-
cients, discriminate and regression coefficients 
and other structural coefficients. The optimal 
weights for each of the physiological measures 
was determined by the data from each of the 
included studies. The relative contributions to 
the optimal weights, as seen over time, con-
verge to a scoring system with roughly half the 
weight given to EDA, i.e. twice that given to the 
other recorded signals.
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Also included in Table 1 are the nor-
malized coefficients. Normalization of values 
ensures that all information can be compared 
on a similar scale for which the sensor values 
will sum to one (1). The actual structural mod-
els can be expected to differ somewhat from 
this simplification. However, normalization in 
this manner can help readers to easily appre-
ciate the relative strength of contribution of 
the different recording sensors.

Literature review

Kubis (1962) described an early study, 
funded by the U.S. Air Force, on the feasibility 
of using computers in polygraph testing. Dis-
criminate functions were calculated for each 
of three polygraph test charts, the means of 
the three discriminate function are shows in 
Table 1. EDA accounted for over 60% of the 
diagnostic variance in that study. Kubis con-
cluded that there was sufficient validity to the 
comparison question test – premised on the 
loading of physiological responses to relevant 
and comparison stimuli – to warrant confi-
dence in the polygraph as a possible aide to a 
decision about whether or not to interrogate. 
Kubis noted the high degree of subjectivity 
and variability in manual polygraph feature 
extraction at that time, especially with regard 
to respiration and cardiovascular activity.  Ad-
ditionally, he commented on the weaker avail-
able computing technology at that time and 
recommended against attempts to develop 
computerized polygraph systems that would 
be intended to make on-the-spot decisions. 
Kubis recommended the use of computers in 
studying and developing polygraph features 
and polygraph feature extraction. One dif-
ference between the instrumentation used in 
this study and that of a modern polygraph in-
strument is that cardiovascular activity was 
recorded with an electronically amplified fin-
gertip (mechanical circumference) plethysmo-
graph, which is different than both the arterial 
pressure cuff and the photoelectric plethys-
mograph in use today. 

Kubis (1964), reported the results 
of a second study on the feasibility of using 
computers in polygraph testing, also funded 
by the U.S. Air Force. This study also used a 
mechanical/circumference fingertip plethys-
mograph in lieu of the arterial cardio cuff sen-
sor. Results of manual/numerical scores were 

reported along with the results of an objec-
tive measurement approach to feature extrac-
tion. Data shown in Table 1 are the concor-
dance rate or frequency deceptive and truthful 
scores that concurred with the criterion states 
of the sample cases. Normalizing the propor-
tions resulted in an EDA coefficient of .41, for 
summed numerical scores and .39 for dis-
criminate scores. 

Kircher (1981) used a sample of com-
munity participants to study the use of com-
puters in the evaluation of PDD test data. 
Statistical and structural coefficients were 
reported for a variety of potential physiologi-
cal measurements in PDD testing and analy-
sis, including the three-chart means of stan-
dardized discriminate function coefficients for 
EDA, cardio and respiration data. Coefficients 
were included for both manual scores and 
computer/measurement scores. Computer 
scores also included a vasomotor sensor. EDA 
accounted for 50% of the variance in manual 
scores and 41% of the variance in computer 
scores for the guilty and innocent participants. 
Kircher concluded that the computer may be 
capable of offering improvements in polygraph 
data analysis. 

Kircher (1983) reported the results of 
another study on the use of computers in lie 
detection and reported point-biserial correla-
tion coefficients for both manual and com-
puterized feature extraction with respiration, 
EDA, cardiovascular and vasomotor sensors. 
In that study, EDA accounted for 28% of the 
variance in manual scores and nearly 47% 
of the variance in computer scores for guilty 
and innocent participants. Kircher also re-
ported the results of a discriminate function, 
for which the normalized coefficient for EDA 
was .46. Kircher reported accuracy ranging 
from 87.5% to 93.7%, with the computer al-
gorithm slightly more effective at identify-
ing programmed guilty subjects and manual 
scores slightly more effective at programmed 
innocent subjects, suggesting that physiologi-
cal response patterns may be qualitatively dif-
ferent for deception and truth-telling. All point 
biserial coefficients in Table 1 are shown as 
r

pb2 to facilitate more intuitive comparison of 
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results from different studies. 

Kircher and Raskin (1988) reported 
a comparison of human and computerized 
evaluations of polygraph data, including res-
piration, EDA, cardio and vasomotor sensors. 
Point-biserial correlations are shown as rpb2 in 
Table 1. For manual scores the EDA accounted 
for 26% of the variance. However, EDA scores 
may be strongly covariant with vasomotor ac-
tivity, also an indicator of autonomic activity, 
and the vasomotor scores also accounted for 
26% of the diagnostic variance. For computer 
scores, for which the vasomotor sensor did 
not contribute additional information and was 
not included in the structural model, the EDA 
accounted for 46% of the observed variance 
in deceptive and truthful outcomes for pro-
grammed guilty and innocent subjects. 

Raskin, Kircher, Honts and Horowitz 
(1988) completed a field study that was fund-
ed by the National Institute of Justice, and 
reported point-biserial correlation coefficients 
for respiration, EDA, and cardiovascular ac-
tivity. Point-biserial correlations are shown as 
rpb2 in Table 1. EDA data alone accounted for 
53% of the observed variance in deceptive and 
truthful outcomes for the guilty and innocent 
examinees in the field sample. 

Raskin and Kircher (1990) completed 
a study on the use of computer algorithms in 
polygraph data analysis and countermeasure 
detection. They reported the coefficients for a 
discriminate function that included respira-
tion, EDA, and cardiovascular activity. EDA 
accounted for 55% of the information in the 
normalized discriminate function that opti-
mized the separation of guilty and innocent 
study participants. Discriminate coefficients 
and the normalization are shown in Table 1. 

Capps and Ansley (1992) completed a 
survey of scores assigned by field examiners 
for each recording sensor and each scoring 
feature using a seven-point numerical scale. 
As shown in Table 1, over 40% of the points 
were assigned to the EDA sensor data. 

Harris and Olson (1994), in a patent 
filing for the Polyscore algorithm, described 
the coefficients of a logistic regression that in-
cluded EDA, cardiovascular activity, and res-
piration (also included pulse line length and 

pulse rate though these are not shown in Ta-
ble 1). The EDA weighting coefficient was 49% 
after normalizing only the information that is 
most similar to traditional polygraph feature 
extraction (respiration, EDA and cardiovascu-
lar activity). 

Ansley and Krapohl (2000) completed 
a survey of examiner scores using the seven-
position scoring method with confirmed field 
cases. Table 1 shows that EDA scores ac-
counted for 55% of all assigned scores in the 
sample data. 

Honts, Amato and Gordon (2000) com-
pleted a study on the outside issue question. 
The study report included correlation coeffi-
cients for each of four scorers for respiration, 
EDA and cardiovascular activity, in addition 
to the vasomotor sensor. Table 1 shows the 
correlations in the form of a coefficient of de-
termination (r2). The coefficient of determina-
tion is an estimate of the observed variation in 
deceptive and truthful outcomes for guilty and 
innocent examinees that is explained by each 
sensor alone (without the addition of the other 
sensors). The mean of the r2 coefficients for the 
four scorers is shown in Table 1. The coeffi-
cient of determination for EDA was .39. After 
normalizing the coefficients to compare their 
relative strength, EDA produced a coefficient 
of .41 when the vasomotor data was included 
and .57 when vasomotor data was excluded. 

Kircher, Krisjianson, Gardner and 
Webb (2005) studied the validity of various 
scoring criteria that were   previously taught 
at the U. S. government polygraph school and 
other accredited polygraph training programs 
in the past. This study concluded that some 
of the scoring features in the past were un-
necessary – leading to a reduction of scoring 
features by the Department of Defense (2006) 
to only those features that are supported by 
scientific evidence – and suggested that pri-
mary scoring features accounted for a major-
ity portion of the diagnostic variance that is 
extracted from recorded polygraph data. Table 
1 shows the point biserial correlations were 
reported for information extracted from each 
recording sensor. EDA data produced an r2 of 
.45. When normalized with the other sensor 
coefficients the relative weight for the EDA was 
.51. 
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Nelson, Krapohl & Handler (2008). De-
scribed the development of the Objective Scor-
ing System, version 3 (OSS-3), and reported 
the coefficients from a discriminate analy-
sis. Table 1 shows the normalized structural 
weighting for the EDA data was .53. 

Nelson (2018) described the evolution 
and development of auto-centering EDA solu-
tions for field polygraph instruments and re-
ported the point-biserial correlation coefficient 
for of EDA and the criterion state of deception 
and truth-telling. The r2 (coefficient of deter-
mination) for auto-centered EDA data was .49 
and is shown in Table 1. The r2 for manually 

centered EDA was .48, suggesting that EDA 
accounts for approximately half of the varia-
tion in deceptive and truthful scores for guilty 
and innocent examinees. 

Nelson [in press] reported the results 
of a structural weighting function for respira-
tion, EDA, and cardiovascular activity, com-
puted with a simple genetic algorithm. A ge-
netic algorithm is a simple form of machine 
learning (also known as artificial intelligence) 
based in the principles of genetics and evolu-
tion: random solutions, survival of the fittest, 
recombination, mutation, and generational 

Table 1. Criterion coefficients for respiration, EDA, cardiovascular activity and vasomotor 
activity.
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improvement. Results from optimization with 
the genetic algorithm are shown in Table 1. 
When applied to respiration, EDA and cardio-
vascular data, EDA data accounted for 54% 
of the diagnostic variance in a sample data of 
confirmed field polygraphs.

Discussion

This paper is a literature survey of 
the development of structural weighting coef-
ficients for respiration, EDA, cardiovascular, 
and vasomotor activity signals used in PDD 
testing. Nineteen different coefficient functions 
from 14 different studies are shown in Table 1, 
along with the results of two additional stud-
ies that reported the criterion coefficients for 
individual sensors. Also shown in Table 1 are 
the normalized coefficients. Normalized coef-
ficients are a simplification of multivariate 
structures but offer the advantage of easier 
and more intuitive comparison of different 
types of coefficients. 

The included studies cover a wide time 
span, from 1962 to the present. Published 
studies have employed a variety of methods 
to evaluate the strength of relationship and 
structural contributions of scores from differ-
ent PDD recording sensors and the criterion 
states of deception and telling. Although there 
is some variability in different estimates of 
weighting coefficients there is obvious consis-
tency in that EDA data accounted for greater 
proportion of diagnostic variance than other 
sensors for all studies included in Table 1. The 
mean of all normalized coefficients for the EDA 
data in Table 1 was .45. when the vasomotor 
sensor was included in the normalization, and 
.49 without the vasomotor sensor. 

Vasomotor activity sensors have been 
used inconsistently and are not included in 
many studies. When it is included, the nor-
malized proportion of the vasomotor sensor 
has varied from .15 in the numerical scores 
of Kircher (1981) to .28 in the normalized cor-
relations of Honts, Amato and Gordon (2000). 
Vasomotor activity was not included in the 
discriminate function of Kircher and Raskin 
(1988), though the point-biserial coefficient 
was reported for the manual scores in this 
study. This suggests that vasomotor activ-
ity may not have contributed additional diag-

nostic variance to the computer model even 
though the vasomotor data is correlated with 
differences between deception and truth-tell-
ing in the PDD testing context. Reasons for 
this are not completely understood and may 
be incompletely explored. It is reasonable to 
assume that vasomotor activity would have 
been included in a computer function if it con-
tributed additional diagnostic variance. It is 
possible that vasomotor activity may covary 
strongly with both cardiovascular activity, and 
EDA, and this may be related to the absence of 
the vasomotor data in the discriminate func-
tion. Further research is needed in this area. 

Of the 19 normalized functions, 16 of 
them produce an EDA weighting coefficient 
over .4. None of the normalized coefficients for 
the other sensors exceeded that of the EDA. 
However, one study, involving the manual 
scores of Kircher and Raskin (1988) included 
a vasomotor coefficient that equaled that of 
the EDA (.26). One other study, involving the 
manual scores of Kircher (1983) reported a va-
somotor coefficient (.27) that nearly equaled 
that of the EDA (.28). 

An obvious limitation of this project 
is that no attempt was made to test the sig-
nificance of observed differences between the 
included studies. Also, no attempt was made 
to test the difference between the sensor data 
within the included studies. Another, neces-
sary, caution is in order when attempting to 
interpret normalized correlation coefficients. 
This is because correlation coefficients are 
calculated for individual sensors and does 
not account for covariance between the sen-
sors. Some of the included studies did report 
a structural model, and these may offer better 
information than simple normalization of the 
reported coefficients. 

Finally, it is important to remember 
that neither EDA, nor any of the other sensor 
data, are expected to be a perfect, determin-
istic, indicator of deception and truth-telling. 
EDA is often discussed in the context of the 
sweating metaphor. However, just as EDA is 
not synonymous with deception, EDA is also 
not synonymous with sweating. Both EDA and 
sweating are associated with increased activ-
ity in the autonomic nervous system, and the 
array of polygraph recording sensors is al-
most uniformly autonomic. However, neither 
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sweating nor autonomic activity are synony-
mous with or deterministic of deception. That 
is autonomic activity and sweating can occur 
for other reasons. Sweating is merely a conve-
nient metaphor for EDA. 

EDA data in field polygraph testing 
is measured using electrical measurements: 
Ohms or Siemens. However, EDA is not syn-
onymous with electrical resistance or electrical 
conductance. That is, non-human objects can 
have electrical resistance and electrical con-
ductance without EDA. EDA is a complex phe-
nomenon for which electrical measurements 
are a convenient and expedient form of data 
acquisition. Just as electrical resistance and 
electrical conductance are a proxy for EDA, 
EDA itself is a proxy for autonomic activity, 
while autonomic activity is a proxy for decep-
tion. Proxy information is not adequate alone 
and may be more adequate when combined 
with other information. Other measurement 
technologies, besides resistance and conduc-
tance, exist for EDA data. 

If the normalized coefficients from 
these studies are interpreted as an indicator 
of the proportion of test scores and test results 
that is explained by each recording sensor 
relative to the other sensors, cardiovascular 
activity data may account for approximately 
30% of observed PDD results, while respira-
tion data may account for approximately 20% 
of observed results. EDA data may account for 
approximately 50% of observed PDD scores 
and test results. Automated computer scoring 
algorithms have frequently made use of the 
differences in the contributions of the differ-
ent recorded PDD signals. Also, differences in 
structural weight or contribution can be ob-
served in manual PDD scoring methods based 
on the seven-position Likert-type scale (Likert, 
1932). However, manual scoring methods that 
make use of the unweighted three-position 
scale may be ignoring some of the diagnostic 
variation it recorded PDD test data. 

One important, and sometimes easily 
overlooked, difference between seven-position 
and three-position scales in PDD test data anal-
ysis is that the seven-position scale is a Likert-
type scale – intended to transform subjective 
information to numerical values – whereas the 
three-position scale can be characterized as 
an objective rank scale. In other words, dif-

ferences in seven position scale values are 
subjective or arbitrary (i.e., without mathe-
matical proof as to the selection of differences 
in scale values) whereas three-position scale 
values can be subject to objective mathemati-
cal proof as to all differences in scale values. 
Although seven position scores can achieve a 
similar approximation, seven-position scores 
are likely to remain less reliable than three-
position scores in field practice, due to the 
lack of theoretical and mathematical proof as 
to differences in seven-position scale values – 
leading to either subjectivity or arbitrariness 
(i.e., arbitrary use of mathematical ratios) in 
score assignment, or to a non-trivial optimiza-
tion problem that will require a volume of high 
quality data and analytic effort. Doubling the 
EDA scores of three-position manual scores 
is a simple and objective way to closely and 
objectively approximate the optimal structural 
solution that can be achieved through more 
complex statistical methods. 

Weighted three-position EDA scores 
make use of long-standing knowledge about 
differences in the structural contribution of 
different PDD signal, do so in a manner that 
does not introduce additional subjectivity, 
arbitrariness and unreliability to the analyt-
ic process. It is therefore not surprising that 
some non-parametric feature extraction and 
numerical transformation methods, such as 
the Objective Scoring System (Krapohl, 2002; 
Krapohl & McManus, 1999) and the ESS/
ESS-M (Nelson, Krapohl & Handler, 2008; Nel-
son et al., 2011; Nelson, 2017), have report-
ed some advantages in manual scoring when 
weighting the EDA data more than the other 
sensor data. Although there are some known 
advantages to data analytic and machine-
learning methods that are deliberately naive 
as to the structural contribution of different 
signals – especially in the early stages of the 
development of analytic solution – multivari-
ate solutions that can make use of available 
knowledge about the relative strength of dif-
ferent signals have ultimately tended to be 
more powerful or effective. Continued inter-
est is warranted in the differences in correla-
tion and structural contribution of different 
PDD recording sensors and the potential for 
optimization and improvement of PDD test ef-
fectiveness that may be achieved through the 
strategic use of naive and weighted structural 
solutions in PDD analytics. 
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Automated Analysis of the Marin Dataset with the ESS-M

Raymond Nelson and Mark Handler

Abstract

The Marin dataset was evaluated with a fully automated version of the ESS-M. Automation 
was applied to feature extraction, numerical transformation and data reduction, calculation of likeli-
hood statistic for each of the sample cases, and the execution of decision rules to obtain a categorical 
test result from the numerical and probabilistic test data. The automated ESS-M achieved a decision 
accuracy rate of 93.5%, excluding an 8.0% inconclusive rate with alpha = .05 for both deception and 
truth-telling - an accuracy effect commensurate with the APA Standards of Practice requirements for 
evidentiary exams. Effect sizes and confidence intervals for test sensitivity, specificity, false-positive 
and false-negative errors are shown. Effects are also shown for other automated scoring methods, 
including, the OSS-2, OSS-3, and Probability Analysis algorithms. No significant difference was 
found between the manual and algorithm scores for correct decisions or inconclusive rates.  

Introduction

Analysis of psychophysiological detec-
tion of deception (PDD) test data is a struc-
tured process involving a coherent sequence 
of operations that is fundamentally similar 
to many other scientific tests. Analytic proce-
dures include feature extraction, numerical 
transformation and data reduction, calcula-
tion of a likelihood statistic for the observed 
test data, and the use of a structured rule to 
parse a categorical test result from the numer-
ical and probabilistic information. 

A traditional approach to PDD test 
data analysis is to execute the analytic pro-
cess manually, using visual feature extrac-
tion, limited transformations involving only 
simple addition, numerical cutscores that can 
be memorized for use without reference to sta-
tistical formulae or reference tables, and pro-
cedural decision rules that can be reduced to 
intuitive heuristics. 

When reduced to rules and procedures, 
manual scoring methods can be learned, prac-
ticed and executed with some reliability by 

The authors are grateful to Don Krapohl for his reviews, edits and comments to earlier versions of this manuscript.

human experts. Human PDD experts using 
visual and manual PDD scoring methods are, 
however, potentially capable of exhibiting in-
consistency and imperfect reliability. Comput-
er algorithms, on the other hand, are intend-
ed to execute these same operations quickly 
and with automated reliability. This study is 
a demonstration of the capabilities of an auto-
mated Empirical Scoring System – Multinomial 
(ESS/ESS-M Nelson, 2017a; 2017b) analysis 
algorithm, with automated feature extraction 
capabilities that were designed to be robust 
against difficult data. The automated ESS-M 
algorithm executed scoring tasks using the 
same ESS/ESS-M transformations (Nelson et 
al., 2011) and Bayesian calculations (Nelson, 
2018a; Nelson & Rider, 2018; Nelson, Handler, 
Coffey & Prado, 2019) that are used by human 
experts when manually scoring PDD data. 

Method

The sample data for this study came 
from an archival dataset consisting of 50 con-
firmed guilty exams and 50 confirmed inno-
cent exams that were conducted using the 
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U.S. Federal Zone Comparison Test (ZCT) for-
mat (Department of Defense, 2006). The Fed-
eral ZCT consists of three relevant questions 
(RQs) and three comparison questions (CQs), 
along with other procedural questions that are 
not subject to analysis. Although some differ-
ences in inconclusive rates have been shown 
to occur as a function of the number of RQs, 
no significant differences in criterion accuracy 
have been shown for the variety of test formats 
that include three RQs and three CQs (Ameri-
can Polygraph Association, 2011). The Federal 
ZCT format is structurally and substantively 
similar to other test formats that include three 
RQs and three CQs.

This sample has been used in previ-
ous studies, and is referred to as the Marin 
dataset, because it was selected for use when 
evaluating examiners for the Marin protocol 
(Krapohl, 2005; Krapohl & Cushman, 2006, 
Marin, 2000). The Marin dataset is useful 
for this project for several reasons, including 
the fact that evaluation of the cases has been 
described as a challenging, though manage-
able, task for human experts, and the fact that 
published accuracy effect sizes are available 
for both human scorers and earlier algorithm 

projects (Nelson, Krapohl & Handler, 2008).

The Marin dataset was selected ran-
domly from the 2002 confirmed case archive at 
the U.S. Department of Defense, with the con-
straint that the sample will include a balanced 
number of confirmed guilty and confirmed in-
nocent cases. Examinations in the Marin da-
taset were conducted during the 1990s by a 
variety of federal and civilian law enforcement 
agencies and were confirmed through a com-
bination of confession and extra-polygraphic 
evidence. However, it is not known how the 
cases came to be included in the confirmed 
case archive. 

The Marin sample data are interesting 
for several reasons, including that it has been 
used in previous studies that provide opportu-
nity for comparison of effect sizes for different 
analysis methods. Table 1 shows previously re-
ported accuracy effects when using the Marin 
dataset with manual scores, including result 
from experienced examiners in Krapohl (2005) 
and Krapohl and Cushman (2006) and both 
experienced and inexperienced examiners in 
Nelson, Krapohl and Handler (2008). Result 
shown are means of the human scorers.

Table 1. Previously reported results (point estimates) using the Marin sample with 
manually scored results.
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Analysis

Data for all cases were exported from a 
proprietary digital format to the NCCA ASCII 
format, and then imported to the R language 
and environment for statistical computing for 
all analysis (R Core Team, 2019). ESS/ESS-M 
feature extraction (Nelson et al., 2011) for each 
sensor, for each relevant question (RQ), and 
each comparison question (CQ) was complet-
ed automatically using the Kircher features 
(Krapohl & McManus, 1999; Kircher, Kristji-
ansson, Gardner, & Webb, 2005). All ESS/
ESS-M numerical transformations were also 
completed via automated computer algorithm, 
including the selection of a single CQ for each 
RQ. Automation was also used to complete all 
statistical lookups and calculations necessary 
to obtain the ESS-M likelihood statistics for 
the sample cases, and to compute the Bayes-
ian posterior likelihood of deception or truth-
telling (Nelson, 2018a; 2018c; 2018d). Finally, 
execution of two-stage decision rules, aka, 
Senter Rules, (Senter, 2003; Senter & Dollins, 
2003) was completed via automation. 

Feature extraction

Respiration data were measured as the 
mean of respiration line excursion (RLE; the 
absolute difference of each subsequent res-
piration sample) (Kircher & Raskin, 2002) for 
a one-second moving average from stimulus 
onset to 15 seconds post stimulus onset ex-
cluding the data from one second before to one 
second after the recorded verbal answer. This 
measurement is robust against distortions at 
the point of verbal answer and is not influ-
enced by the length of the 15 second evalua-
tion window – effects with different measure-
ment periods will have a similar metric. EDA 
reactions were measured as the onset of a pos-
itive slope segment during a response onset 
window (ROW) from .5 seconds after stimulus 
onset to 5 seconds after the verbal answer to 
the greatest y-axis (vertical) distance to sub-
sequent peak of reaction (onset of negative 
slope) within an evaluation window from stim-
ulus onset to 15 seconds after stimulus onset. 
Cardiovascular activity was extracted by first 
calculating the mean of all cardio sensor sam-
ples. This can be thought of, and plotted, as 
the mid-line between the systolic and diastolic 
peaks. Cardiovascular activity changes were 

then extracted, using the cardio mid-line, us-
ing a procedure similar to the one for the EDA 
data.  

One additional procedure was includ-
ed in the automated feature extraction for the 
EDA and cardiovascular data. If there was no 
response onset during the ROW, a response 
onset was inferred statistically during positive 
slope segments using a z-test of the variance 
of the one second mean of the  difference of 
each subsequent EDA sample. A response on-
set was imputed if the difference in variance 
for two adjacent one-second windows exceed-
ed the alpha = .001 boundary. This can be vi-
sualized as a substantial increase in positive 
slope angle within a positive slope segment 
during the ROW. All measurement values were 
taken in dimensionless units – not indexed to 
any physical quantity. 

Numerical transformation and data 
reduction

For each recording sensor, dimension-
less values for all RQ and CQ measurements 
were transformed to R/C ratios by pairing 
each RQ with a single CQ using the heuris-
tic described by Nelson (2017c). For this test 
format the first RQ in the question sequence 
is compared to the preceding or subsequent 
CQ depending on which CQ has produced the 
greater change in physiology, while the second 
and third RQs are compared only to the pre-
ceding CQ. Each of the R/C ratios were then 
transformed to their natural logarithm. Use 
of the log transformation changes the asym-
metrical distribution of all possible ratios (be-
tween zero and infinity, with a mean of one), 
to a symmetrical distribution with a mean of 
zero. 

Sign values of respiration data were in-
verted so that all logged R/C ratios are intui-
tively similar to traditional integer scores used 
when manually scoring polygraph data. In this 
way, negative scores are associated with de-
ceptive test outcomes and positive scores are 
associated with truthful outcomes. Finally, all 
logged R/C ratios were converted to three-po-
sition objective rank scores (Department of 
Defense, 2006; Nelson & Handler, 2018) using 
the ordinal rank values [-1, 0, +1] using the 
optimization constraints shown in Table 2. 
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Table 2. Threshold constraints for non-parametric scores

Logged R/C ratios greater than zero 
(positive values) were transformed to -1 inte-
ger scores if they were within the optimization 
constraint values for positive scores, while 
logged ratios less than zero (negative values) 
were converted to +1 integer scores if they 
were within the optimization constraints for 
negative scores. Values that were not within 
the minimum and maximum optimization 
constraints for negative or positive scores were 
transformed to ordinal rank scores of zero (0). 
All sign values were corrected so that positive 
(+) scores correspond to truthful outcomes 
while negative (–) scores correspond to decep-
tive outcomes. 

Three-position ordinal rank scores 
were then transformed to ESS/ESS-M scores 
by doubling all EDA scores (Nelson, 2017a; 
Nelson et al., 2011). Previous studies have 
shown that EDA data have a stronger criterion 
correlation and greater structural contribu-
tion polygraph effect sizes than other sensor 
data, often contributing nearly one-half of the 
information contained in the final score and 
test result [See Nelson (in press) for a sum-
mary]. 

ESS/ESS-M scores were then summed 
between recording sensors to subtotal scores 
for each individual RQ. Subtotal scores were 
summed to obtain a grand total score. The 
resulting ESS/ESS-M scores can be viewed 

as analogous to the ESS/ESS-M values that 
would be obtained via traditional manual/vi-
sual feature extraction – with the advantage 
that automated reliability provides greater re-
sistance to human error due to fatigue, con-
fusion or other bias . Like traditional manual 
scores, automated ESS-M scores are expected 
to be loaded in the range greater than zero for 
innocent examinees, and less than zero for 
guilty examinees. 

ESS-M likelihood function and 
Bayesian calculations. 

The purpose of any scientific test is 
to quantify some phenomena that cannot be 
subject to perfect deterministic observation or 
direct physical measurement. Virtually all sci-
entific tests require the use of some form of 
likelihood function to provide a statistical or 
probabilistic value for the observed test data 
[See Casella and Berger (2003) for information 
on statistical inference.] A likelihood function 
can be as simple as the known test sensitivity 
or specificity rates. A likelihood function can 
also take the form of a mathematical equation 
or statistical function – or can also take the 
practical form of a computer program to ac-
complish the mathematical and statistical cal-
culations. A likelihood function can be found 
in other forms such as an empirical reference 
distribution. And a likelihood function may 
even be calculated from a theoretical reference 

 	  1 A difference between automated ESS/ESS-M scores and manual ESS/ESS-M scores – aside from the difference 
in process – is that automated scores are rank scores whereas manual scores can be thought of as Likert (1932) scores. 
Likert scores are a highly useful device to code or transform subjective information to numerical values for analysis. In 
this context the difference between rank scores and Likert scores is that rank scores are objective, leading to improved 
reliability and improved ability to quantify the margin of error or level of confidence associated with a test result or 
conclusion.
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(1 to 1) were within the Clopper-Pearson inter-
val. To field polygraph examiners this can be 
simplified using lookup tables (Nelson, 2017a; 
2018a) which show the ESS-M numerical cut-
scores for grand total scores were +3 or greater 
for truthful classifications, and -3 or lower for 
deceptive classifications. An additional at-
tempt was made to classify the cases using 
the subtotal scores when the grand total score 
was inconclusive. This was done using a sub-
total cut-score of -7 or lower for the statisti-
cally corrected posterior odds of the lowest of 
the three RQ subtotal scores.

Decision rules

All scientific test results are fundamen-
tally probabilistic, simply because the purpose 
of many scientific tests is to quantify phenom-
ena of interest that are amorphous and not 
subject to physical measurement. Probabilistic 
results are interesting for scientific purposes, 
but often provide inadequate structural guid-
ance for practical purposes. Scientific test re-
sults, in practical terms, are interpreted cate-
gorically as either positive or negative, wherein 
the term positive signifies the presence of the 
phenomena of interest while negative signifies 
the absence of the phenomena of interest. Cat-
egorical test results for PDD exams are often 
reported using the terms deception indicated 
(DI)or no deception indicated (NDI) for diagnos-
tic exams and significant reactions (SR) and 
no significant reactions (NSR) for screening ex-
aminations. 

Regardless of the terminology used, 
the meaning of the categorical test result is 
unchanged. Of importance is the procedure 
employed to parse the categorical result from 
the numerical and probabilistic information. 
A number of PDD decision rules are described 
in publication. Categorical results for Federal 
ZCT exams in the Marin dataset were parsed 
automatically using a two-stage decision rule 
(Senter, 2003; Senter & Dollins, 2003). The 
Two Stage Rule (TSR) is executed in two stag-
es, the first of which involves the aggregation 
of all scores for all RQs. The second stage of 
the TSR is employed only if the results of the 
first stage are inconclusive and involves the 
use of the individual RQ scores to attempt 
a positive classification of the test result. In 
practice only one RQ score, that most indica-

distribution – using only information subject 
to mathematical and logical proof under the 
theory of a test. 

The ESS-M likelihood function is this 
latter type – a multinomial distribution (refer-
ence table) of all possible PDD test scores, un-
der the null-hypothesis to the analytic theory 
of PDD testing, and the statistical likelihood 
of each possible score. The analytic theory 
of PDD testing holds that greater changes 
in physiological activity are loaded on differ-
ent types of stimuli as a function of deception 
or truth-telling in response to relevant target 
stimuli (Nelson, 2015; 2016). The null hypoth-
esis to the analytic theory of the polygraph 
states that PDD scores are not loaded in any 
systematic way. 

In many areas of science and scientific 
testing, it is very difficult to calculate an ex-
pected distribution under a theory or hypoth-
esis, but it is quite easy to calculate a distribu-
tion under a null hypothesis. This is because 
the null hypothesis can often be characterized 
as resulting in a random distribution of scores. 
The expected distribution of randomly loaded 
ESS/ESS-M scores under the null hypothesis 
is multinomial (Nelson, 2017a). The multino-
mial distribution of ESS/ESS-M scores can 
provide a mathematically coherent and repro-
ducible likelihood value for an observed test 
score. The likelihood value can be submitted, 
together with the observed test data and a pri-
or probability of deception or truth-telling, to 
Bayes theorem (Bayes & Price, 1763; Berger, 
1985; Laplace, 1812; Rubin, Gelman, Carlin. 
& Stern, 2003; Stone, 2013, Winkler, 1972) to 
calculate a posterior probability of deception 
or truth-telling. 

For each case, a Bayesian confidence 
interval (credible interval) was calculated for 
the ESS-M posterior probability of deception 
or truth-telling using the Clopper-Pearson 
method (Clopper & Pearson, 1934) and a one-
tailed alpha = .05th for deception and truth-
telling. In this way, cases were classified as 
deceptive when the .05th percentile lower limit 
of the posterior odds of deception exceeded the 
prior odds of one-to-one. Similarly, cases were 
classified as truthful when the .05th percen-
tile lower limit of the posterior odds of truth-
telling exceeded that same prior. Cases were 
classified as inconclusive when the prior odds 
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tive of deception, is used during the second 
stage. [See Nelson 2018b for a survey and de-
scription of PDD decision rules.]

Results from the automated ESS-M 
were tabulated for each case. Results were 
then sent to a third party for comparison with 
the known criterion states for each of the 
sample cases. Information returned from the 
analysis included the TP, TN, FN, FP, and in-
conclusive rates, but did not include the crite-
rion states of individual cases. As a result, no 
post-hoc investigation of errors was possible. 
Confidence intervals were calculated in the R 
language and environment for statistical com-
puting (R Core Team, 2019) using a bootstrap 
procedure. 

Results

Results of the automated ESS-M with 

the Marin dataset are shown in Table 3, includ-
ing the point estimate for the sample dataset 
and bootstrap 95% confidence interval (.025th 

and .975th quantiles) for the percent correct, 
rate, along with the sensitivity or true-positive 
(TP), specificity or true-negative (TN), false-
positive (FP) and false-negative (FN) rates. The 
automated ESS-M achieved a decision accu-
racy rate of 93.5%, excluding an 8.0% incon-
clusive rate. To facilitate a more direct com-
parison of the automated ESS-M and OSS-3 
algorithms, results were recalculated with the 
OSS-3 (Nelson et al., 2008) using a symmetri-
cal alpha boundary of .05 for deceptive clas-
sifications and .05 for truthful classifications. 
These results were only slightly different from 
the previously reported OSS-3 results (where 
alpha was .05 for deception and .1 for truth-
telling), with a decision accuracy rate of 91.9% 
excluding a 14.0% inconclusive rate.

Table 3. Point estimates and confidence intervals [.025th, .975th} for automated ESS-M and 
OSS-3 with the Marin dataset (alpha = .05, .05).

Also shown in Table 3 are the effect 
sizes and bootstrap confidence intervals for 
confidence for the Probability Analysis (PA) al-
gorithm (Kircher and Raskin, 1988; Raskin, 
Kircher, Honts & Horowitz, 1988) along with 
the OSS-2 algorithm (Krapohl & McManus, 
1999; Krapohl, 2002) using the [+8, -8] cut-
scores recommended by Dutton (2000), and 
the OSS-3 algorithm (Nelson, Krapohl & Han-
dler, 2008). 

A four-level one-way ANOVA for the 
percentage of correct decisions was not signifi-
cant [F (3,396) = .179, (p = .910)] for differenc-
es among the automated scoring algorithms. A 
second for level ANOVA for inconclusive results 

was also not significant [F (3,396) = 2.253, (p 
= .082)]. Post-hoc power analysis showed the 
experimental power = .072 to be weak for the 
detection of a significant accuracy effect size 
difference similar to that observed and would 
require a sample size of N=3,030 to achieve 
a power level of .8. Post-hoc power calcula-
tions for the observed difference in inconclu-
sive rates also showed the experimental power 
= .496 to be weak at detecting a significant 
difference in effect size as small as that ob-
served, with a required sample size of N=191 
to achieve a power level of .8. Mean decision 
accuracy for the four automated scoring algo-
rithms was 92.1% and the mean inconclusive 
rate was 14.3%.
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A second three-level one-way ANOVA 
was not statistically significant for differences 
in decision accuracy for the manual scores – 
using only the results with evidentiary rules – 
shown in Table 1 [F (2,297) = .150, (p = .861)]. 
Differences were also not significant for incon-
clusive results for the manual scores [F (2,297) 
= .289, (p = .749)]. These results replicate the 
results of earlier studies (Horvath, 1974, Nel-
son, Krapohl & Handler, 2008; Raskin, Kirch-
er, Honts & Horowitz, 1988). that showed no 
effect for the level of experience when analyz-
ing polygraph data

A bootstrap hypothesis test of the 
n=100 sample case results was used to com-
pare accuracy for the mean of manual scores 
and the mean of automated scores. Although 
the mean accuracy for the computer algo-
rithms exceeded the mean accuracy for man-
ual scores, results from the bootstrap hy-
pothesis test were not statistically significant 
(p = .266). The difference in the observed in-
conclusive rate for the computer algorithms 
and manual scores was also not statistically 
significant (p = .111). As described earlier, a 
sample of substantially larger size would be 
required to have sufficient statistical power to 
reliably detect a significant effect of the size of 
the observed difference between the manual 
and automated scores in this project. 

Discussion

This project is a demonstration of PDD 
accuracy effect sizes for the Marin dataset, 
consisting of 100 field exams conducted with 
the Federal ZCT format, using automated fea-
ture extraction of ESS scores with multinomial 
reference distribution and Bayesian analysis. 
All aspects of the test data analysis were auto-
mated, including feature extraction, numeri-
cal transformation and data reduction, cal-
culation of likelihood statistic for each of the 
sample cases, and the execution of decision 
rules to obtain a categorical test result from 
the numerical and probabilistic test data. The 
automated ESS-M achieved a decision accu-
racy rate of 93.5%, excluding an 8.0% incon-
clusive rate. Noteworthy in Table 3 is the fact 
that each of the four automated scoring algo-
rithms achieved an accuracy rate commen-
surate with the 90% accuracy requirements 
of the APA Standards of Practice for eviden-

tiary exams (American Polygraph Association, 
2011; American Polygraph Association, 2018). 
However, the means of manually scored re-
sults, shown in Table 1, did not achieve the 
evidentiary standard, though they were simi-
lar to the algorithm results when scoring the 
same data set.

An obvious advantage of automated 
analysis is the reliability and reproducibility 
of analytic results. Of course, a limitation of 
automated systems is the temptation for field 
practitioners to attempt to evaluate data that 
are artifacted, unstable, or unresponsive qual-
ity or examination data that is inconsistent 
with the algorithm’s design and intended data 
requirements. Future development efforts 
should be devoted to the automation of the 
evaluation of standards compliance and the 
interpretable or usable quality of examination 
data. 

One potential advantage of visual fea-
ture extraction and manual scoring – related 
to subjectivity and reliability – is the ability 
to creatively resolve problems when there are 
minor departures from standard procedure in 
the conduct and recording of an exam (e.g., 
questions labeled in unexpected ways) and 
when the examination data are unresponsive, 
artifacted or unstable. This potential advan-
tage also leads to potential problems with reli-
ability of analytic results. Although some hu-
man experts may be highly skilled at working 
with difficult data, it is inevitable that differ-
ent human scorers may exhibit differences in 
terms of abilities, levels of fatigue, biases and 
other motivations. It is also inevitable that any 
examination that is intended for use in an ad-
versarial legal proceeding – or any adjudica-
tion process that involves a decision about a 
person’s rights, liberties or economic and pro-
fessional opportunity – may be discussed by 
different experts with different views and con-
clusions. Additionally, examiners who work 
with a high volume of examinations should 
not be surprised (and should probably expect) 
to observe occasional differences in their own 
scoring of the same data sets. These concerns 
have the potential to result in possible confu-
sion and mistrust around the scientific value 
and meaning of PDD test results. Although 
computerized PDD scoring algorithms have 
not possessed the innate creativity or ethically 
derived motivation of experienced human ex-
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perts, computer algorithms available today 
can “learn” to execute complex procedures 
with such great speed and reliability that mi-
croprocessors, computer logic, and computer 
algorithms are used to improve the effective-
ness of the human professional in virtually 
every area of science, technology and profes-
sional activity. 

Analysis of PDD test data has pro-
gressed through several stages of develop-
ment. The earliest involved the development of 
technology to obtain recordable physiological 
signals that are correlated with differences be-
tween deception and truth-telling. In profes-
sional practice, the earliest stages of activity 
can be thought of as a stage of experimentation 
wherein creative observers dedicated count-
less hours to develop an understanding and 
intuition about complex and high-dimensional 
data. A subsequent stage of professional activ-
ity can be thought of as a stage of expertise in 
which professional effectiveness and observed 
effect sizes are a function of expertise  - of-
ten developed through a combination of innate 
talent and ability and exhaustive practical tri-
al and error experience under the supervision 
of more other experts. This was characterized 

by an emphasis on unstructured professional 
judgment due to the absence of well-defined 
structural methods. Evidence-based practice 
is characterized by a well-developed under-
standing of learnable and reproducible profes-
sional activities that are shown to be empiri-
cally correlated with desired outcomes. 

Clearly defined evidence-based prac-
tices will also give rise to the potential for au-
tomation of routine and repetitive tasks. Au-
tomation increases the potential for reliable 
execution of complex procedures. Although 
capable of effect sizes similar to computerized 
statistical algorithms, visual feature extraction 
and manual test data analysis are inherently 
more subjective than automated processes. 
Also, manually executed procedures can be 
less reliable than automated algorithms due 
to human factors such as fatigue, expectation 
bias and other factors. Although continued 
interest in both manual and automated test 
data analysis solutions is recommended, a 
challenge for professionals will be to learn to 
make use of automation, autonomous systems 
and automated analytic methods without ne-
glecting the ethical locus of responsibility that 
all decisions that affect human outcomes will 
remain a human concern.
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Editor’s note: update to the National Center for Credibility Assessment 
PDD 503-ANALYSIS II TEST DATA ANALYSIS: Numerical Evaluation Scoring 

System Pamphlet.

There is an updated version of this manual dated August 2017, available for download at:

https://antipolygraph.org/documents/ncca-numerical-scoring-2017-08.pdf

Here is the note describing the changes.

Note: The content and substance of this pamphlet was officially approved on 23 Aug 2006. 

In March 2011, this pamphlet was edited, but only for grammatical issues and curriculum 

style, format, and consistency of design factors, and no substantive changes to the content 

were made. In January 2012, content changes were made relative to requirements for two 

artifact free askings. In June, 2014, content changes were made effectively eliminating the 

2:1 ratio from the EDA Ratio Scale. In Aug 2015, content changes were made changing the 

wording of “artifact free” to “valid asking”, as well as a definition added to App. G. Jan 2017: 

Changed EDA/CV ROW from “SO to EA” to “SO to 5 seconds beyond the EA”. The latency rule 

is effectively eliminated by the new ROW. Aug 2017: Updated the description of the 7-position 

scoring methods for the CV channel.
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Introduction to the NCCA ASCII Standard

[editorial staff]

The NCCA ASCII format is a specification that defines a structured file format that all North 
American polygraph instrument manufactures were requested to include in all software versions 
beginning during 2009. The NCCA ASCII text format offers the potential for readability by human or 
machine, and resolves data access problems for research, development and analysis in contexts that 
may involve different polygraph instrument software solutions with different proprietary formats. 
The capability to export data to a common format reduces the likelihood that vendor formats will 
be become known or compromised. A common format also increases the capability to accommodate 
future changes to proprietary data formats and reduces the likelihood that valuable data will become 
obsolete or unusable. An ability to access polygraph data in a known data output specification im-
proves options for polygraphic feature extraction and data analysis beyond the visual and manual 
methods that were the best available technology solutions during the pre-computer epoch. The 
specification and an example are shown in Appendices. 

 1The APA editorial staff is grateful to John Kircher and the late Andy Dollins for their work in creating and coding the 
NCCA ASCII format.  We are also indebted to APA Past President Raymond Nelson for encouraging and helping create this 
document.

During 2009 the Threat Assessment 
and Strategic Support (TASS) branch of the 
Defense Academy for Credibility Assessment 
(DACA; now known as the National Center 
for Credibility Assessment, NCCA) requested 
all North American manufacturers of poly-
graph instruments to include a software fea-
ture to export the recorded polygraph data to 
a known ASCII text format, referred to here 
as the NCCA ASCII specification. The goal was 
to create a data format that contains all the 
hardware, software, physiological data, tim-
ing, and question information for each chart 
in an examination. 

The specification itself was defined by 
Dr. Andrew Dollins [now deceased] and Dr. 
John Kircher. In the 10 years since the defini-
tion and implementation of the NCCA ASCII 
specification, its importance and usefulness 
have been subtle for most field polygraph ex-
aminers but substantial for those interest-
ed in accessing polygraph data for scientific 
study or research. Whereas most field exam-
iners view the displayed or printed chart trac-
ings (a term held over from the days when ink 
was traced onto a moving paper via capillary 
action) as the data itself, scientists interested 

in studying or advancing our knowledge and 
field practices in scientific lie detection will 
view data as a time-series of recorded numeri-
cal values – for which computers are unques-
tionably useful. 

Today nearly all computerized poly-
graph systems include a convenient tool to ex-
port the recorded data to the NCCA ASCII for-
mat. A well-specified and known data format 
person permits researchers and developers to 
import the data into any preferred statistical 
or analysis environment. Access to the record-
ed signals permits the study and optimization 
of signal processing and feature extraction so-
lutions that go well beyond merely drawing a 
time-series plot for visual inspection, and po-
tentially well beyond the limitations of tradi-
tional visual analysis.  In addition to data ex-
port capabilities, most computerized polygraph 
systems available today also include the capa-
bility to import the data from the NCCA ASCII 
format – increasing the potential for meaning-
ful evaluation and comparison of similarities 
and differences in data display and analysis 
tools available in different software solutions 
available to polygraph field practitioners. Al-
though perhaps of limited usefulness to many 
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field practitioners, these capabilities are of vi-
tal importance to the advancement and future 
of the polygraph profession. 

Appendix A shows the general speci-
fication for the dimensions and formatting of 
the output file, in addition to the naming of 
the output file. Structured file names clearly 
identify the series and charts for each exami-
nation. All information for each test chart is 
output to a single file. Header information (Ap-
pendix B) describes the instrumentation, test 
date, and other information about the exam 
such as the data sampling rate, stimulus 
events, and event timings. Standards are also 
provided for how the physiological data is to be 
structured for output (Appendix C), including 
data for each of the recording sensors. An ex-
ample of an NCCA ASCII output file is shown 
in Appendix D. 

The NCCA ASCII text format offers 
the potential for readability by human or ma-
chine, and resolves data access problems for 
research, development and analysis in con-
texts that may involve different polygraph in-
struments with different proprietary formats. 
The capability to export data to a common 
format reduces the likelihood that vendor for-
mats will be become known or compromised. 
A common output format also increases the 
capability to accommodate future changes to 
proprietary data formats and reduces the like-
lihood that valuable data will become obsolete 

or unusable. Most importantly, a common and 

published specification for data output under-

scores the fact that providing plotted data on 

a computer display or printed paper is not the 

same as proving access to the data. Access to 

the data, for any scientific purpose, requires 

access to knowledge about the specifications 

of the data output format. Technology vendors 

that do not provide easy access to output data 

in a known and usable format should be re-

quested to prioritize the future and advance-

ment of the polygraph profession by provid-

ing access to the polygraph data through the 

NCCA ASCII specification. Vendors who do not 

make data available through the NCCA ASCII 

specification – or other published format – are 

limiting the future of the polygraph profession 

by limiting polygraphic feature extraction and 

data analysis methods to visual and manual 

calculation methods that were the best avail-

able technology solutions prior to the wide-

spread availability of powerful computing plat-

forms. 
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Appendix A. Output File Structure and Naming Convention

The objective is that all of the hardware, software, physiological data, timing, and question 
information for one chart shall be contained in one human readable ASCII text file. The ASCII file 
shall not contain tab characters because tab-character spacing varies among data-viewing pro-
grams. The data columns shall be right justified as depicted below.

The specific ASCII text file output will depend on the originating polygraph system, but we 
ask that the following conventions be followed.

• Use the upper case letter D as the first letter in the file name.

• Use $, &, %, or # as the second character in the file name as follows:

o $ = Axciton

o & = Lafayette

o % = Limestone

o # = Stoelting

• Use a “-“ as the third character in the file name.

• The fourth through Last-2 characters will be the originating examination name (see 

   examples below).

• Use a “-“ as the Last-1 character in the file name.

• Use the series/ examination number (in hex) as the last character in the file name 

   follows: 

o 1 = Series/ Examination 1

o 2 = Series/ Examination 2

o . . .

o 9 = Series/ Examination 9

o A = Series/ Examination 10

o B = Series/ Examination 11

o F = Series/ Examination 15

o NOTE: Axciton & Stoelting-DOS only – Because Axciton and Stoelting-DOS do not 

   differentiate examination types in the file name structure, please always use an X as   

   the Last-1 character.

• The first and second characters in the file name extension should indicate the chart 

   number such that 01 = chart 1, 02 = chart 2, etc.
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• Use the letter “A” as the final character in the file name extension.

• Output file name examples:

o D$-$$$$ZG14-X.03A = Axciton, Exam X, Chart 3

o D$-$$765TGZ-X.17A = Axciton, Exam X, Chart 17

o D&-175-802-20050106 MGQT-2.01A = Lafayette, Exam 2, Chart 1

o D&-PF71-2004-03-19-PR1-B ZCT-1.04A = Lafayette, Exam 1, Chart 4

o D%-2007-13-1.01A = Limestone, Exam 1, Chart 1

o D%-DACA 04 2007-3.02A = Limestone, Exam 3, Chart 2

o D#-00001-X.02A = Stoelting, Exam X, Chart 2

o D#-01-X.09A = Stoelting, Exam X, Chart 9
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Appendix B. Output ASCII Text File Header Information

• The structure of the ASCII Text output file shall be as follows (see examples at the end of this      

    document): 

o Name of the file being written

o Name of the source data file (for Lafayette, Limestone, & Stoelting Windows use the primary 

    subdirectory name)

•  Name of the instrument used to collect the data as follows:

o Axciton DOS

o Axciton Windows

o Lafayette Windows

o Limestone Windows

o Stoelting DOS

o Stoelting Windows

• Version of the software used to collect the data, or “No Version Available”

• Date the data was collected in DDMMMYY format

• Time data collection began in military format (1000, 1300, 2000 etc)

• Examination number (or “X” for Axciton & Stoelting)

• Number of the chart in the series:

• Number of questions:

• Number of data samples per second (fastest channel)

• Number of data samples per fastest channel

• Number of channels

• Sample rates (in Hertz) for each channel as follows (assuming variable storage rates):

o Sample Rate (Hz)- UPneumo: 10

o Sample Rate (Hz)- LPneumo: 10

o Sample Rate (Hz)- EDA1: 15

o Sample Rate (Hz)- Cardio1: 60

o Sample Rate (Hz)- Move1: 60

• Event list heading (see examples below)

• Event list as follows: o Columns 01-02 = Event number (01 to 99) Right Justified 
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o Columns 03-06 = spaces 

o Columns 07-14 = Event/ Question Label 

o Column 15 = space 

o Column 16-80 = Question or Event Text* 

	 * Allowed 8 spaces for the Event/ Question label. This should allow enough space for all 
vendors to use the Examiner’s original Event or Question Label from the original chart – except for 
Limestone which may have to truncate Question Labels longer than 8 spaces.

	 ** If the Question field is left blank, duplicate the event label in the Question field. 

	 *** If the question text is more than 66 characters long, continue the question beginning in 
column 16 of the next line. 

• Event location heading (See example below) 	

• Event locations, right justified, as follows: o Columns 01-02 = Event number (01 to 99 0   

   right justified) 

o Columns 03-06 = spaces 

o Columns 07-14 – Event/ Question Label (right justified) 

o Columns 15-25 = Sample event began on (right justified integer) 

o Columns 26-36 = Sample event ended on (right justified integer) 

o Columns 37-47 = Sample answer occurred on (right justified integer) 
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Appendix C. Physiological Data

• The physiological data shall be output into the following eight right justified columns, separated by 
spaces (if no movement sensor was used the Move1 column shall be filled with the value 9999.9): 

o Columns 01-06 = Data sample number (beginning at 1)

o Columns 07 = space 

o Columns 08-15 = data sample time (beginning at 0) where XX:YY.ZZ where X=minutes,     

    Y=seconds, & Z= 1/100 of a second

o Columns 16 space

o Columns 17-24 = Event/ Question labels right justified with leading “-“s (accurate to fastest 

    sample rate)

o Columns 25-35 = upper respiration channel data (Upneumo)

o Columns 36-46 = lower respiration channel data (Lpneumo)

o Columns 47-57 = electrodermal channel data (EDA1)

o Columns 58-68 = cardiovascular channel (Cardio1)

o Columns 69-79 = movement channel (Move1)

o Columns 80-90 = additional channel 6

o Columns 091-101 = additional channel 7

o Columns 102-112 = additional channel 8

o Columns 113-123 = additional channel 9

o Columns 124-134 = additional channel 10

• Data columns 1 – 8 shall have the following 8 headings:

o Sample

o Time

o Label

o Upneumo

o Lpneumo

o EDA1

o Cardio1

o Move1

• Use the following headings for additional channel data columns as needed:
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o Cardio2, Cardio3, - additional ascultatory cardiovascular measures

o PPG1, PPG2 – cardiovascular activity by photoplethysmography

o ECG1, ECG2 – cardiovascular activity by electrocardiography

o Voice1, Voice2 – audio recording channels

o Move2, Move3 – additional movement sensors

o EMG1, EMG2 – electromyographical activity

o EDA2, EDA3 – additional electrodermal activity

o PLE1, PLE2 – plethysmography at other sites (chest, penis)

o TEMP1, TEMP2 – temperature sensors

o LPupD, RPupD – left & right pupil diameter

o LEyeP, REyeP – left & right eye position

o HEOG, VEOG – horizontal & vertical electrooculogram

o Other?

• The data shall be written at the actual sample rate. In EXAMPLE 1 below, each channel was 
sampled, or interpolated, to 60 samples per second.

NOTE: Limit sample rate to a maximum of 120. To the best available know-ledge the fastest 
current storage rate is 100 Hz. 

• The physiological data shall be written right justified, with 1 decimal place (F11.1). If the 
raw data range is not between 1.0 and 999999.9, adjust so that all data falls within that 
range. If no data exist for the data point (e.g., different sample rates, no Move1 channel) write 
-9.9 as depicted below.

• Event Labels for Answers shall be “-----Yes”, “------No”, or “-----Ans”
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Appendix D. Example Output File

Name of this file: D&-X20190812-1.01A
Source file:  X20190812
Instrument: Lafayette Windows
Software Version: 11.8.3.218
Chart Date: 31Dec69
Time: 19:00
Examination Number: 1
Chart Number: 1
Number of questions: 9
Fastest Sample Rate (Hz): 30
Number of samples: 7907
Number of channels: 7
Sample Rate (Hz)- UPneumo: 30
Sample Rate (Hz)- LPneumo: 30
Sample Rate (Hz)- EDA2: 30
Sample Rate (Hz)- Cardio1: 30
Sample Rate (Hz)- Move1: 30
Sample Rate (Hz)- EDA2: 30
Sample Rate (Hz)- PL: 30

Event    Label Statement

01           X This practice test is about to begin. Please sit still. Look straight ahead. Listen

               carefully to each question and answer just as we have discussed. No other talking,     

               and do not move during this practice test. 

02           1 Did you write the number 1?

03           2 Did you write the number 2?

04           3 Did you write the number 3?

05           4K Did you write the number 4?

06            5 Did you write the number 5

07          6 Did you write the number 6?

08          7 Did you write the number 7?  

09          XX This practice test is complete. Please sit still until I release the pressure in the

               cardio sensor. Name of this file: D&-X20190812-1.01A

Source file:  X20190812



134

Introduction to the NCCA ASCII Standard

Polygraph & Forensic Credibility Assessment , 2019, 48 (2)

Event    Label Statement

01           X This practice test is about to begin. Please sit still. Look straight ahead. Listen

               carefully to each question and answer just as we have discussed. No other 
talking, and

               do not move during this practice test. 

02           1 Did you write the number 1?

03           2 Did you write the number 2?

04           3 Did you write the number 3?

05          4K Did you write the number 4?

06           5 Did you write the number 5?

07           6 Did you write the number 6?

08           7 Did you write the number 7?

09          XX This practice test is complete. Please sit still until I release the pressure in the

               cardio sensor.

Event    Label      Begin        End     Answer

01           X        738        868   

02           1       1623       1678       1703 

03           2       2386       2439       2466 

04           3       3163       3222       3248 

05          4K       3948       4004       4037 

06           5       4735       4790       4813 

07           6       5513       5568       5593 

08           7       6303       6358       6383 

09          XX       7081       7155   
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Sample     Time    Label    UPneumo    LPneumo      EDA1    Cardio1      Move1       EDA2           PLE1

     1 00:00.00 --------        16102.0        43230.0    29783.0   257758.0   463987.0     6794.0   237588.0   

     2 00:00.03 --------        16451.0        44021.0    29742.0   266777.0   463308.0     6793.0   600591.0   

     3 00:00.06 --------        17107.0        45612.0    29677.0   267911.0   462805.0     6787.0   871068.0   

     4 00:00.10 --------        18982.0        47430.0    29637.0   266684.0   463223.0     6777.0   898617.0   

     5 00:00.13 --------        20173.0        49071.0    29581.0   261089.0   464169.0     6764.0   805945.0   

     6 00:00.16 --------        21276.0         50545.0    29538.0   253123.0   464788.0     6748.0   709585.0   

     7 00:00.20 --------    	 22348.0          51505.0    29503.0   246371.0   464590.0     6729.0   620585.0   

     8 00:00.23 --------    	 23370.0          53670.0    29460.0   243706.0   464749.0     6709.0   533106.0   

     9 00:00.26 --------    	 24960.0          55452.0    29429.0   245422.0   464473.0     6688.0   477644.0   

    10 00:00.30 --------    	 26133.0          56988.0    29381.0   247821.0   464840.0     6665.0   471043.0   

    11 00:00.33 --------   	  27073.0         58639.0    29347.0   247632.0   465423.0     6640.0   482089.0   

    12 00:00.36 --------    	 28324.0          60031.0    29317.0   244604.0   465981.0     6614.0   470864.0   

    13 00:00.40 --------    	 29577.0          61346.0    29270.0   237597.0   466751.0     6588.0   424666.0   

    14 00:00.43 --------    	 30845.0          63759.0    29241.0   229131.0   467736.0     6561.0   359372.0   

    15 00:00.46 --------    	 32523.0          65201.0    29221.0   219407.0   468025.0     6534.0   292193.0   

    16 00:00.50 --------    	 33626.0          66480.0    29195.0   210471.0   468401.0     6507.0   238304.0  

                                                                       DATA OMITTED HERE 

  7903 04:23.39 --------    68276.0          48981.0    19955.0   109743.0   481490.0    14182.0   421374.0   

  7904 04:23.43 --------    66294.0          47338.0    19934.0   112466.0   480802.0    14089.0   409459.0   

  7905 04:23.46 --------    64283.0          44937.0    19919.0   112251.0   479897.0    14002.0   429179.0 

   7906 04:23.50 --------    63053.0         43162.0    19923.0   109281.0   479256.0    13919.0   436729.0   

  7907 04:23.53 --------       -9.9               41599.0       -9.9       -9.9       -9.9       -9.9       -9.9



 


