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Abstract 
Respiration line length, measured as excursion, was studied using N = 72 segments of data from 
36 stimulus presentations sampled from comparison questions tests conducted during confirmed 
field investigations. Raw data were compared to signal processing models including low-pass 
filtering and interpolation of answer-movement artifacts. Measurements using raw data explained 
2.4% of the criterion variance, while processed data explained 15.6% of the variance; a difference 
that was statistically significant (p = .018). After combining the data from thoracic and abdominal 
sensors, excursion measurements using the processed respiration data concurred with the binary 
case status for 69.4% of the sample segments, with a criterion coefficient that accounted for 18.5% 
of the variance in case status. Results using raw data concurred with the criterion state for 61.1% 
of the sample segments, and produced a criterion coefficient that accounted for 4.8% of the 
variance in case status. Scores using the filtered data concurred with the criterion status at a rate 
that was significantly greater than chance (p = .007), while results using the raw data were not 
significantly different than chance (p = .086). Sample data indicate that high sampling rates can 
introduce non-diagnostic noise that significantly reduce the diagnostic value of respiratory 
excursion measurements, while processing of raw pneumograph data can improve the accessibility 
of diagnostic information. 
 
 
 

Introduction 
 
 Respiratory line length (RLL; Kircher & 
Raskin, 1988; Timm, 1982), measured as the 
linear sum of absolute changes in Y-axis 
excursion (Kircher, Kristjiansson, Gardner & 
Webb, 2005; Kircher & Raskin, 2002), is a 
commonly used scoring feature for breathing 
movement (i.e., pneumograph) data from 
comparison question test formats.1  
Respiratory suppression, or the relative degree 
of reduction in breathing movement activity, 
has become the respiration feature most often 
used in objective analysis of the time series 
data from comparison question test formats 
(Honts & Driscoll, 1987, 1988; Kircher & 

Raskin, 1988; Krapohl & McManus, 1999; 
Nelson, Krapohl & Handler, 2007; Raskin, 
Kircher, Honts & Horowitz, 1988).  Relative 
strength of breathing movement suppression 
can be measured by comparing excursion 
measurements that occur in response to 
relevant and comparison question stimuli 
(Department of Defense, 2006; Harris, Horner 
& McQuarrie, 2000; Kircher et al., 2005).    
 
 Some differences can be observed in 
feature extraction and signal processing 
models reported in previous studies. The most 
notable of these differences are related to the 
sampling frequency.  Kircher and Raskin 
(1988) described the digitization of analog
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pneumograph data using 0.5 second sampling 
along with a 20-second measurement period. 
Conversion to a 60Hz sampling rate was 
described in another study (Kircher, 
Kristjiansson, Gardner & Webb, 2005), along 
with the use of a 10-second measurement 
period. In contrast, a 30Hz sampling was 
mentioned in a study by Harris, Horner and 
McQuarrie (2000), with no information about 
length of the measurement period.  
Additionally, Kircher et al. reported that 
pneumograph data were subject to a 
smoothing procedure prior to feature 
extraction, while Harris et al. described the 
similar use of a “defuzzification” procedure. 
Finally, Kircher and Raskin described the use 
of editing and interpolation to remove answer-
distortion artifacts (i.e., subtle movement 
artifacts that occur when the examinee 
engages in the physical act of a verbal 
answer), while other studies make no mention 
of this procedure.   
 
 Most publications provide an absence 
of procedural and mathematical detail 
regarding the method for combining the scores 
or time-series data from the two respiratory 
sensors, though it appears likely that 
averaging is a common method (Harris, 
Horner & McQuarrie, 2005). However, Krapohl 
and McManus (1999) describe the retention of 
the stronger of thoracic and abdominal 
respiratory scores when the sign values 
concur, and setting the value to neutral (i.e., 
zero) when they do not concur.  
 

 Kircher and Raskin (1988) reported a 
point-biserial correlation (rpb) of 0.55 for RLL 
scores and case status, with a multivariate 
weighting coefficient of .17. Raskin, Kircher, 
Honts and Horowitz (1988) reported rpb = 0.39 
for RLL scores in a replication study. Kircher, 
Kristjiansson, Gardner and Webb (2005) 
reported a point-biserial correlation of rpb = 
.42 for thoracic respiration data, rpb = .34 for 
abdominal respiration, and rpb = .41 for the 
combined respiration data. Harris, Horner & 
McQuarrie (2000) did not report correlation 
statistics but reported an unweighted average 
concordance of 68.7% between RLL scores 
and case criterion state.  
 
 The hypothesis of interest was that 
objective/automated respiratory excursion 
measurements represent a valid and useable 

diagnostic feature to make statistical 
inferences about deceptive and truth-telling in 
response to verbal stimuli during comparison 
question testing. An additional hypothesis was 
that signal processing can improve the 
availability and usability of recorded 
diagnostic information in the time-series 
respiration data.  
 

Design 
 
 A small sample of field examinations 
was obtained, consisting of confirmed tests 
conducted in the context of criminal 
investigations in a large metropolitan police 
agency. Veracity of deceptive cases was 
established by a combination of the 
examinee's own admission and physical 
evidence, while the veracity of truthful 
subjects was determined by a combination of 
a subsequent exonerating confession from 
another individual and physical evidence. 
Details of the examinee demographics, nature 
of the allegation or incident under 
investigation, and case-by-case confirmation 
was not made available, and numerical scores 
from the original examiner scores were also 
not available. Using six confirmed 
examinations that were determined to 
conform to established test administration 
protocols, a sample of 72 segments of 
pneumograph data was constructed, 
consisting of 36 stimulation presentations for 
which both thoracic and abdominal 
respiration data were recorded. Thirty-six 
segments of data were from examinees who 
were confirmed to be deceptive and 36 
segments were from those who were later 
confirmed to be truthful.  
 
 All data were collected using LX4000 
and LX5000 field polygraph instruments 
using both thoracic and abdominal breathing 
movement sensors. Pneumograph sensor 
design is that of two corrugated rubber tubes 
and beaded chains that encircle the test 
subject in a non-restrictive manner, to 
function as plethysmographic sensors that 
record changes in thoracic and abdominal 
volume and circumference. Pneumograph 
sensors are sealed to atmospheric pressure, 
and data are transformed to electrical signals 
via transducers that measure changes in the 
difference between atmospheric pressure and 
the pressure within the sealed thoracic and 
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abdominal sensors. Electrical signals are 
converted to digital values using 24-bit 
analog-to-digital conversion technology and 
then transmitted to a computer for recording 
and analysis. Sample data included 36 
segments of data from thoracic respiration 
sensors and 36 segments from abdominal 
sensors.  
 
 All signal processing, interpolation, 
measurements, scores, and calculations were 
automated during this investigation. The 
threshold for statistical significance for this 
analysis was .05. 
 

Analysis 
 
 Raw data for all segments were output 
to a text file format, consisting of stimulus 
event data and output from the analog-to-
digital conversion process at a rate of 30Hz. 
Text files were converted into vectorized 
numerical data for each physiological sensor 
and the pneumograph data were retained for 
this analysis.  

 An algorithm was developed to 
automatically locate and remove answer-
movement artifacts. Using the procedure 
described by Kircher and Raskin (1988), the 
linear space was interpolated for one 
preceding and one subsequent second 
surrounding each point of verbal answer. 
Figure 1 shows an example of an interpolated 
verbal answer segment from 5 seconds prior 
to stimulus onset to 15 seconds after stimulus 
onset. Also shown in Figure 1 is the raw 
pneumograph data.  
 
 A feature extraction algorithm was 
developed to measure RLL from stimulus 
onset until the end of a defined measurement 
period. RLL measurements were obtained by 
summing the absolute magnitude of Y-axis 
change for successive samples (Kircher & 
Raskin, 1988; Kircher, Kristjiansson, Gardner 
& Webb, 2005; Kircher & Raskin, 2002). 
Following Kircher et al. (2005), RLL 
measurements were taken from stimulus 
onset to 10 seconds following stimulus onset.  

 
 
 

Figure 1. Interpolation of answer-movement artifact 

 
 
 
 Difference scores were calculated as 
the ratios of RLL measurements for relevant 
(R) and comparison (C) question stimuli. 
Ratios were calculated by dividing excursion 
measurements for each relevant stimulus by 
the excursion measurements for the 
comparison stimulus (Krapohl & McManus, 

1999) using the stronger of the reactions at 
the comparison stimuli adjacent to each 
relevant stimulus (i.e., preceding or 
subsequent) following the procedure described 
by the Department of Defense (2006). Because 
the distribution of all possible R/C ratios will 
be asymmetrically distributed between zero 

 165 Polygraph, 2013, 42(3) 



Pneumograph Signal Processing 

and infinity with a mean of 1, all ratios were 
converted to their natural logarithm to 
produce a normally shaped distribution with a 
mean of zero. Sign values were such that 
values above zero could be interpreted as 
corresponding with truth-telling, while values 
below zero could be interpreted as indicative 
of deception.  
 
 Point-biserial correlations were 
calculated using the logged R/C ratios and a 
binary value, coded as 1 or -1, representing 
the confirmed guilty or innocent case status, 
comparing each relevant question to the 
stronger adjacent comparison question (i.e., 
shorter excursion measurement). A coefficient 
of variation was calculated using the square of 
the point-biserial coefficients (r2). This can be 
interpreted as a criterion coefficient, and can 
be understood of as the proportion of variance 
in binary case status that is explained by the 
measured feature.  In other words, how much 
of a truthful or deceptive decision is actually 
accounted for by the measured pneumograph 
data.2 Coefficients were calculated using 
unprocessed raw data, in addition to data that 
were processed using a first order Butterworth 
filter3 designed to achieve a low-pass corner 
frequency of fc = 0.886Hz, and using a simple 
moving average smoothing filter involving a 
buffer of 0.5 seconds. The smoothing filter is a 
simple form of finite response filter with a low-
pass corner frequency of .886Hz.4  
 

Results 
 
 The Pearson product moment 
correlation for the 72 logged R/C ratios using 
raw and smoothed pneumograph was r = 
.772. The coefficient of variation indicated that 
59.9% of the variance in logged R/C ratios 
was shared between the raw and smoothed 

data. The correlation statistic for the low-pass 
filter and moving average smoothing filter was 
r = .988, indicating that 97.7% of the variance 
in scores was shared between the two models. 
Because of the near-perfect correlation 
between these two signal processing models, 
only the raw and smoothing filter (i.e., moving 
average) data were retained for the remainder 
of the analysis.  
 
 The Pearson correlation statistic for 
the logged R/C ratios from 36 thoracic and 36 
abdominal segments was r = .822 for the raw 
data, with a coefficient of variation indicating 
that 67.6% of the scored response variance 
was shared by the two sensors.  Correlation 
for the logged R/C ratios using the filtered 
data was r = .830, indicated that 68.9% of the 
variance in scores was shared between the 
thoracic and abdominal sensors.  
 
 Logged R/C ratios using the raw data 
produced a criterion coefficient that explained 
2.4% of the variance in case status, while the 
filtered data explained 15.6% of the variance. 
A two-sample t-test based on a bootstrap of 
1000 re-sampled sets of the 72 data segments 
indicated that the difference was statistically 
significant (p = .018).  
 
 The criterion coefficient (r2) for the 
thoracic respiration data indicated that the 
raw data accounted for 6.7% of the variance in 
case criterion state while the filtered data 
explained 22.3% of the criterion variance. 
Coefficients for the abdominal respiration data 
indicated that raw data explained 0.2% of the  
criterion variance of the sample data while 
filtered data accounted for 9.5% of the 
variance in case criterion state. Results are 
shown in Table 1. 

 
 
 
 
 
 
2 Criterion coefficients provide a better measurement of scoring feature validity compared to the simple proportion of 
concurrence or percent of correct scores because these simpler measures neglect to account for the likelihood that 
correct or incorrect scores can occur due to random chance.  
 
3 The first order Butterworth low-pass filter consists of a mathematical procedure in which each Output Value = 
Xcoeff + previous Xcoeff + Yconstant * Ycoeff, where Xcoeff = Input Value / Xconstant, and Ycoeff = the previous 
Output Value. Xconstant = 0.1174704212 and Yconstant = 0.8297443748 for the 30Hz sampling rate. 
 
4 fc = (0.443 / Number of Point ) * fc, where fc = corner frequency and fs = sampling frequency. 
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Table 1. Point-biserial coefficients (rpb) and [criterion coefficients (r2)] for logged R/C ratios 
from thoracic, abdominal and combined sensors 

 
N = 36 for all cells Thoracic Abdominal Averaging Combined 

Raw 0.258 [.067] .047 [.002] .218 [.048] .218 [.048] 

Filtered 0.472 [.223]* .308 [.095] .433 [.188]* .430 [.185]* 

* statistically significant 
 
 
 
 A Monte Carlo Bootstrap of the 
criterion coefficients using the filtered 
respiration data showed that the mean 
difference in criterion coefficient was signifi-
cant (p < .001) for logged R/C ratios using the 
thoracic and abdominal data. R/C ratios 
using the thoracic sensor were significantly 
greater than chance (p = .026), while ratios 
using the filtered data from the abdominal 
sensor did not exceed chance (p = .126). 
Ratios using the raw data did not exceed 
chance expectations for either thoracic (p = 
.140) or abdominal (p = .233) respiration data. 
A two-way ANOVA showed that the interaction 
of criterion state and sensor location was not 
significant [F 1,68 = 1.3, (p = .258)].  
 
 To achieve a single respiratory 
response score using the two breathing-
movement sensors, logged R/C ratios from 
thoracic and abdominal respiration sensors 
were combined using two different procedures. 
One procedure was a modification of that 
described by Krapohl and McManus (1999) in 
which the score was retained for whichever 
sensor produced a stronger absolute value 
whenever the sign values concurred for the 
logged R/C ratios for the thoracic and 
abdominal sensor data.5 The second method 
combined the two logged R/C ratios by 
averaging. These results are also shown in 
Table 1. 
 
 Using the filtered respiration data, the 
criterion coefficient for the N = 36 logged R/C 

ratios accounted for 18.8% of the variance in 
case status with the averaging model. Using 
the Krapohl and McManus (1999) method of 
combining the data from the two sensors, the 
coefficient explained 18.5% of the criterion 
variance. A Bootstrap t-test showed this 
difference was not significant (p = .449).  
 
 Sign values for RLL measurements 
based on filtered data concurred with the 
criterion state at a rate of 69.4% that was 
significantly greater than chance (p = .007), 
while sign values using raw data concurred 
with the criterion state at 61.1% which was 
not greater than chance (p = .086). 
 
 One ancillary analysis was conducted 
to further explore the effect of the measure-
ment period on the criterion coefficient. Using 
the filtered data, RLL measurements and R/C 
ratios were calculated while varying the length 
of the measurement period at 1-second 
intervals from 5 to 25 seconds. Figure 2 shows 
a plot of the point-biserial correlation 
coefficients using the thoracic and abdominal 
scores in addition to the point-biserial 
coefficients when combining the two sensors 
by averaging and using a modification of the 
method described by Krapohl and McManus 
(1999). Coefficients showed peak diagnostic 
efficiency using measurement periods ranging 
from 10 seconds to 25 seconds. Criterion 
coefficients were weak using measurement 
periods shorter than 10 seconds.  

 
 
 
 
 
5 Krapohl and McMannus (1999) converted R/C ratios to integer scores using a normed non-parametric 
transformation, whereas the present study uses a log transformation of R/C ratios. Another difference is that 
Krapohl and McManus set the score to 0 when the sign values from the scores of thoracic and abdominal sensors 
did not concur, while the present study used the thoracic pneumo score when the sign values were different.   
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Figure 2. Point-biserial correlations for logged R/C ratios using measurements from 5 to 25 
seconds 

 

 
 
 
 A Monte Carlo Bootstrap of the 
thoracic, abdominal, averaged and combined 
logged R/C ratios was calculated while varying 
the measurement period randomly from 10 to 
25 seconds. A one-way ANOVA, using a Monte 
Carlo Bootstrap of the thoracic, abdominal, 
averaged and combined logged R/C ratios 
while varying the measurement period 
randomly from 10 to 25 seconds, showed that 

differences were significant [F (3,143) = 2.836, 
(p = .040)]. Post-hoc analysis showed that the 
difference was significant only for the thoracic 
and abdominal sensors [F (1,71) = 5.648, (p = 
.020)]. Figure 3 shows the mean plot for the 
Monte Carlo Bootstrap of the thoracic and 
abdominal sensors along with two methods of 
combining the sensor data. 

 
 
 
Figure 3. Mean and 95% confidence ranges for criterion coefficients for respiration sensors 
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 To better understand the potential 
effect of various measurement periods on 
excursion measurements, a second Monte 
Carlo Bootstrap ANOVA was completed to 
compare the results while randomly varying 
the measurement periods within four bins 
from 6 to 10 seconds, 10 to 15 seconds, 15 to 
20 seconds, and 20 to 25 seconds while 
combining the filtered respiration data from 
the two sensors. Figure 4 shows the mean plot 
and 95% confidence intervals. Criterion 

coefficients differed significantly using 
different measurement periods [F (3,143) = 
17.28, (p < .001)]. Post-hoc analysis showed 
no significant difference between 
measurements from 11 to 25 seconds [F 
(2,107) = 1.867, (p = .160)] and that 
significant differences were limited to 
measurements shorter than 10 seconds when 
compared to measurements from 11-25 
seconds [F (1,71) = 23.55, (p < .001)]. 

 
 
 
Figure 4. Mean and 95% confidence ranges for criterion coefficients of binned measurement 

periods 
 

 
 
 

Summary 
  
 Results of this study replicate and 
extend those of four earlier studies describing 
feature extraction and signal processing of 
pneumograph data from comparison question 
test formats (Harris, Horner & McQuarrie, 
2000; Kircher, Kristjiansson, Gardner & 
Webb, 2005; Kircher & Raskin, 1988; Raskin, 
Kircher, Honts & Horowitz, 1988). Difference 
scores, based on respiratory excursion 
measurements, produced criterion coefficients 
that were consistent with those reported in 

previous studies that used smoothing 
procedures or lower sampling frequencies. 
Results herein support the validity of the 
hypothesis that RLL, measured as the sum of 
absolute changes in Y-axis excursion for each 
successive sample, can be used in comparison 
question test paradigms to make inferences 
about deception and truth-telling at rates 
significantly greater than chance. 
 
 These results also support the 
hypothesis that signal processing,6 in the form 
of low-pass filtering and interpolation of 

 
 
 
 
6 Signal processing alternatives include hardware filters, and digital signal processing methods that may be 
implemented in either device firmware or computer software. 
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answer-movement artifacts can improve the 
availability of diagnostic information in time-
series respiration data. Filtered respiration 
data outperformed the raw data for this 
sample, accounting for a significantly greater 
portion of the criterion variance and resulted 
in respiratory excursion measurements that 
exceeded chance expectations. Respiratory 
excursion measurements using filtered data 
concurred with the case criterion at a rate 
that was significantly greater than chance, 
and was consistent with the results reported 
by Harris, Horner and McQuarrie (2000). 
Respiratory excursion measurements using 
the filtered data accounted for the variance in 
case criterion at a rate consistent with the 
multivariate weighting coefficient reported by 
Kircher and Raskin (1988), and the point-
biserial coefficients reported by Kircher and 
Raskin (1988),  Kircher, Kristjiansson, 
Gardner and Webb (2005), and those of 
Raskin, Kircher, Honts and Horowitz (1988).  
 
 Results based on raw data did not 
exceed chance expectations, suggesting that 
excursion measurements based on raw data 
may be non-diagnostic. The practical meaning 
of this is that high-frequency sampling and 
recording of pneumograph data may may offer 
little or no benefit when the data are to be 
aggregated through summation of absolute 
value of y-axis change, and that the diagnostic 
value high frequency recording data can be 
improved using common signal processing 
methods. In short: improving the visual 
appearance of the data through low-pass 
filtering can result in increased accuracy of 
excursion measurements and may potentially 
increase test accuracy.  
 
 Two different methods were compared 
for combining the R/C ratios from the thoracic 
and abdominal sensors, with nearly 
equivalent performance between the two 
methods: averaging, and retention of the 
stronger value. The practical implication of 
this is that field examiners may wish to 
continue the practice of combining the two 
using the simpler of the two methods – 
selecting the stronger of two scores – while 
retaining the thoracic value when the sign 
values do not concur. Additional studies 
should be conducted to further understand 
the optimal model for combining data from the 
two respiration sensors.  

 The point-biserial correlation using 
thoracic respiration data exceeded that using 
the abdominal sensor, and the difference was 
statistically significant. Of interest is that the 
coefficients based on the thoracic respiration 
sensor alone exceeded those from both the 
abdominal respiration sensor and the 
combination of the two. A similar result was 
described by Kircher, Kristjiansson, Gardner 
and Webb (2005), while Harris and Olsen 
(1994) described using only the thoracic 
pneumograph data.   
 
 Ancillary analysis of the influence of 
the measurement period on diagnostic 
efficiency showed that measurement periods 
shorter than 10 seconds are significantly less 
effective than those from 10 to 25 seconds. 
There were no statistically significant 
differences for measurement periods from 10 
to 25 seconds, suggesting that the length of 
the measurement period may be a blunt issue.  
 
 This study is limited by the small 
sample size, absence of high-quality 
information about case demographics, and 
absence of details about case confirmation. 
Despite these limitations, the sample data 
appeared to be of average interpretable quality 
that is consistent with many examinations 
observed in field polygraph settings, and the 
results herein are consistent with those 
previously described in the published 
literature. An important consideration is that 
these results pertain to automated 
measurement and automated scoring. 
Although this information may be of 
secondary interest to manual scoring 
procedures, visual analysis of both online and 
printed test data may not be subject to high-
frequency influence in the same way as 
automated measurement. A final 
consideration is that evidence at this time 
suggests that respiratory data from directed-
lie comparison question tests may not hold 
the same diagnostic meaning as data from 
more traditional comparison question tests 
(Horowitz, Kircher, Honts & Raskin, 1997; 
Kircher, Kristjiansson, Gardner & Webb, 
2005).  
 
 An additional limitation of the present 
study is the use of a hypothesis testing 
paradigm in the context of feature 
development, resulting in the potential that 
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real advantages may be overlooked and 
underutilized due to the lack of statistical 
significance. Although it would be generally 
unwise and ineffective to attempt to 
implement a signal discrimination model 
using a single diagnostic feature, statistical 
decision models can achieve significant 
results through the effective combination of 
features that are themselves less significant or 
not significant. Statistical model building 
involves more than the simple combination of 
valid criteria but requires the statistically 
optimal combination of a set of criteria that 
work together to enhance signal detection or 
signal discrimination.  
 
 Continued interest in respiratory 
excursion measurements is recommended 
among field examiners, researchers, and 
instrument manufacturers. Development 
efforts should continue to explore the use of 
signal processing methods to display and 
measure respiration data used in field 

polygraph instruments. Additional studies are 
recommended to further investigate the role of 
the measurement period in the effectiveness of 
respiratory excursion measurements, to 
further understand the potential advantages 
of different signal processing alternatives, and 
to further investigate the optimal use or 
combination of thoracic and abdominal 
respiratory sensor data. The alternatives to 
continued research would be to engage a 
static condition in which progress and 
improvement are absent, or to endorse 
hypothetical approaches without evidence, 
and to risk misleading both professional field 
examiners and those who make testing 
referrals with the hope of achieving high levels 
of decision accuracy.  Finally, at a time when 
the use of evidence-based practices is 
increasingly emphasized in the medical, 
mental health, and forensic professions, any 
use of unvalidated signal processing and 
feature extraction models should be viewed 
with increasing caution.  
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