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Abstract 
Archival scores were used to evaluate the multi-facet hypothesis regarding test questions in the 
Federal ZCT when scored via a rank order test data analysis (TDA) model. Data were analyzed 
using bootstrapping and multivariate analysis. Dimensional profiles and statistical confidence 
intervals were calculated for criterion accuracy using different decision rules. Results from these 
analyses do not support the multi-facet hypothesis, which worsened criterion accuracy. Criterion 
accuracy was highest when the rank order scores were interpreted as a single issue. Unweighted 
combined decision accuracy for grand total scores was 87.6% excluding inconclusive results, and 
a 12.1% inconclusive rate. Results of the rank order model were compared to three other TDA 
algorithms: OSS-2, OSS-3, and a replication of the Probability Analysis algorithm. All three 
computer algorithms achieved decision accuracy levels over 90% with inconclusive rates less 
than 20%. Results based on rank order scores were also compared to results from a previous 
study in a cohort of inexperienced scorers evaluating the same confirmed case sample with the 
Empirical Scoring System. There was no advantage to the rank order model. Issues surrounding 
test item variance in rank order and nonparametric models are discussed. Possible improvements 
to a rank order scoring model were evaluated, and a weighted rank order model achieved an 
accuracy level of 90% with 19% inconclusives. 
 
 
 

Introduction 
 
 The multi-facet hypothesis suggests 
that criterion accuracy would be highest for 
examinations conducted with the Federal 
Zone Comparison Test (ZCT) format for 
psychophysiological detection of deception 
(PDD) exams when the subtotal scores of the 
evidence-connecting question is scored 
independently from the other questions. 
Gordon (personal communication, 
1/6/2011), suggested that the Federal ZCT is 
a multi-facet exam, due to the use of an 
evidence connecting relevant question (RQ), 
and posited that the first two RQs (R5 and 
R7) of the Federal ZCT represent a distinct 
single issue, while the third RQ (R10) 
represents a separate evidence connecting 
issue. An example of a direct involvement 
question would be “did you do it,” where “it” 
describes the examinee’s behavioral 
involvement in the issue of concern. An 
example of an evidence connecting question 
would be “did you help do it,” “did you plan 
it,” or “did you participate in it,” where “it” 
describes the incident of concern in a manner 
that is detached from the action verbs which 
describe the examinee direct involvement. 

Gordon further suggested that the first two 
questions should be scored and evaluated 
independently of the third question, and that 
a deceptive result for the evidence-connecting 
questions should supersede the results of the 
first two questions if they are non-deceptive. 
According to Gordon, a non-deceptive result 
can be achieved by the subtotal scores of R5 
+ R7, as long as the score for R10 is not 
deceptive. Krapohl, Gordon & Lombardi 
(2008) published the results of a study using 
a sample of Federal ZCT exams and the rank 
order scoring model described by Gordon 
(1999), and by Gordon and Cochetti (1987), 
showing a combined decision accuracy of 
84% using the rules and cut-scores proposed 
by Gordon, and 86% using the grand total 
score and optimal cut-scores described by 
Krapohl, Dutton and Ryan (2001). We 
evaluated Gordon’s multi-facet hypothesis 
regarding the Federal ZCT using archival 
rank order scores from the Krapoh et al. 
study. 
 
 Rank order transformation models 
have at times been described as a “Horizontal 
Scoring System,” and the Academy of 
Scientific Investigative Training (ASIT) 
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Horizontal Scoring System ([HSS], Gordon & 
Cochetti, 1987; Gordon et al., 2006). The 
term horizontal refers to either the arbitrary 
arrangement of the table matrix of scores of 
the observed reactions, or to the fact that 
rank order scores are assigned to 
physiological sensor data which are displayed 
along a horizontal x-scale or time axis. PDD 
scoring table matrices are correctly 
understood as three-dimensional numerical 
matrices, though not geometric, consisting of 
1) multiple presentations, of 2) a series of test 
questions, and 3) an array of physiological 
sensors. Like other test data analysis (TDA) 
models, rank order scores of several 
iterations of a sequence of test questions are 
aggregated to achieve subtotal and grand 
total values. Values arranged horizontally 
could just as easily, and just as arbitrarily, 
be arranged vertically with no impact on the 
numerical test results. The descriptive term 
rank order is used throughout this paper, 
instead of the metaphorical term horizontal. 
The transformation method will be easily 
recognized by statisticians and model 
developers as a nonparametric rank 
transformation scheme in which the naturally 
occurring variance in response will be 
discarded and replaced with a uniform rank 
order variance. Rank order models, and 
nonparametric methods, although weaker in 
statistical power compared to parametric 
counterparts, are useful and informative 
when evaluating problematic data that do not 
conform to parametric assumptions or 
requirements.  
 
Nonparametric Methods 
 Rank models are nonparametric and 
make no attempt to use the linear shape or 
parametric qualities of the data. 
Nonparametric coding models are therefore 
somewhat blunt, with weaker statistical 
power and less precision than their 
parametric counterparts. It is not uncommon 
to employ a combination of parametric and 
nonparametric methods, so long as 
parametric requirements are satisfied when 
parametric models are used. As a general 
principle, parametric models are preferred 
over nonparametric models. 
 
 Nonparametric statistical methods 
have been used in the past when parametric 
methods were unattainably complicated. 
However, the availability of powerful 

computers has substantially changed the 
ability to make complex calculations, and 
nonparametric are now primarily used only 
when data are of poor quality or when 
parametric requirements cannot be satisfied. 
It is inevitable, when removing or discarding 
noise or uncontrolled variance in this 
manner, that some potentially useful 
diagnostic information will also be lost. 
Information that is discarded is no longer 
available for analysis or interpretation. For 
example: in horse racing, rank 
transformations can be used to replace event 
timings to tell us which horses have placed 
first, second, or third in a race, but the 
placement ranks themselves have lost the 
ability to tell us the distance between the 
horses or the finishing times. When using a 
rank order coding scheme, test items will 
appear to be forced apart when the natural 
variance or strengths of reactions are very 
similar, and test items will be forced together 
when the natural variance or strength of 
reaction is very different.  
 
 All data can be thought of as a 
combination of diagnostic information that is 
accounted for or explained by the construct 
of interest, along with random uncontrolled 
variance that cannot be accounted for. This is 
sometimes referred to as signal and noise, 
but the underlying concerns pertain to the 
variance of the data. When conducting PDD 
examinations, the data of interest are 
physiological responses to psychological 
stimuli that are presented in the form of test 
questions to which the examinee will verbally 
answer “no” with the understanding that the 
answer will be interpreted as either truthful 
or deceptive regarding the examinees' denial 
of involvement in a behavioral concern. 
Diagnostic information must be empirically 
correlated with the criterion categories, and 
diagnostic features should be supported by 
statistical analysis and statistical modeling of 
their structural validity. The goal of any 
testing procedure is to make the diagnostic 
information accessible and reduce the 
influence of uncontrolled variance. In all 
forms of scientific testing, TDA is ultimately a 
matter of variance.  
 
 A test result can be classified with 
respect to the criterion when the variance of 
reactions to the test stimulus differs from 
normally expected variance at a statistically 
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significant level. It is therefore necessary to 
study and describe the normal variance of the 
data, so that statistical norms can be used to 
calculate the level of significance or 
probability that an individual test result has 
occurred due to error or random chance. In 
comparison question test (CQT) PDD 
examinations, diagnostic and screening 
efficiency is determined by calculating the 
level of statistical significance of measured or 
observed differences in the variance or 
strength of response to two different types of 
test stimuli: relevant and comparison stimuli.  
 
Rank Order Transformations and PDD 
Examinations 
 Rank order TDA models have been 
previously described in the published 
literature (Gordon, 1999; Gordon & Cochetti, 
1987; Gordon et al., 2006; Honts & Driscoll, 
1987, 1988; Krapohl, Dutton & Ryan, 2001; 
Krapohl, et al., 2008; Miritello, 1999), 
however their use in field settings is less 
common than the seven-position scoring 
method (Backster, 1963a, 1963b; Bell, 
Raskin, Honts & Kircher, 1999; Department 
of Defense, 2006a; Swinford, 1999), and the 
three-position model (Blackwell, 1998; 
Department of Defense, 2006; Harwell, 2000; 
Krapohl, 1998; Van Herk, 1990). Rank order 
scores, and rank order variance, in CQT PDD 
exams are imposed on the population of 
responses to RQs and comparison questions 
(CQs) for each component sensor within each 
examination chart. Rank values are assigned 
to PDD scores for each component sensor 
(i.e., pneumograph, electrodermal [EDA], 
cardiograph), treating the two pneumograph 
sensors as a single channel. Questions that 
produce the strongest reaction are assigned 
the highest rank value, equivalent to the 
number of questions in the population (i.e., 
the number of combined RQs and CQs). Rank 
scores for RQs are not compared to the 
stronger of the nearest comparison as in 
other TDA models (Department of Defense, 
2006). Instead of identifying the greater 
reaction within each pair of relevant and 
comparison stimuli, rank ordering requires 
examiners to evaluate the greatest of all 
reactions within a chart, then the second 
greatest reaction, then the next greatest 
reaction, etc., until all reactions are arranged 
in a hierarchy of reaction strength.  
 

 It is common in rank models to assign 
an average of the tied rank values when 
reactions are of similar value. Honts and 
Driscoll (1987, 1988) first described the use 
of tied ranks in a rank order PDD model, and 
Gordon (1999) later adopted the same 
procedure. The use of tied ranks is imposed 
because the rank order paradigm mandates 
that there can be only one item in each rank 
position even if two items are of equal value. 
The rank values are summed and divided by 
the number of tied values, and the resulting 
average or tied rank value is assigned to the 
items that produced the equivalent values. 
Neglecting this procedure would result in 
arbitrary judgments about which item to 
assign the strong rank value, and would 
potentially contaminate the results. Equally 
concerning would be the potential 
contamination that would result from the 
assignment of the higher rank score to both 
items, as this would result in the fabrication 
of increased integer rank scores. Rank order 
transformations, although conceptually 
simple, are procedurally complex in that they 
require the simultaneous evaluation of all 
test stimuli.  
 
 Two rank order TDA models have 
been described in the published literature. 
One model was described by Gordon (1999), 
Gordon, Fleisher, Morsie, Habib and Salah 
(2000), Gordon and Cochetti (1987), and also 
by Krapohl et al. (2008). The other model was 
described by Honts and Driscoll (1987, 1988). 
The two rank order models differ in their 
physiological features, cut-scores, and 
decision rules. The model proposed by Honts 
and Driscoll (1987, 1988) is based on primary 
physiological features for which there are 
multiple published studies that provide 
evidence of their statistical development and 
validity (Harris, Horner & McQuarrie, 2000; 
Kircher, Kristjansson, Gardner & Webb, 
2005; Kircher & Raskin, 1988, 2002; Raskin, 
Kircher, Honts & Horowitz, 1988). These 
features are sometimes referred to as “Kircher 
features” (Dutton, 2000; Krapohl & 
McManus, 1999).  
 
 The rank order scores in this study 
were obtained using the features described by 
Gordon (1999), which appear to have been 
developed atheoretically and without 
published description of statistical analysis 
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or structural model coefficients which 
support their validity.  
 
 The rank order models, proposed by 
Honts and Driscoll (1987, 1988) and Gordon 
and Cochetti (1987) appear to differ in their 
mathematical transformations. In the rank 
order model introduced by Honts & Driscoll 
(1987, 1988), the rank order scores are 
partitioned into subtotal scores for the 
relevant question (RQ) scores and comparison 
question (CQ) scores. The RQ subtotal is then 
subtracted from the CQ subtotal. When the 
RQs produce generally stronger reactions, a 
phenomenon correlated with deceptive 
persons, the final score will be a negative 
integer value. When the CQs produce 
generally stronger reactions, a phenomenon 
correlated with truthful persons, the final 
score will be a positive integer.  
 
 Gordon (1999), Gordon et al. (2006) 
and Krapohl, et al. (2008) use a different 
procedure, in which RQs are assigned a 
negative sign value while CQs are designated 
with a positive sign value. Each RQ score is 
added to the score of the preceding CQ. 
Following that, subtotal scores are summed 
for each RQ and for the examination as a 
whole, if it is a single issue examination. The 
difference between these methods is 
procedural only. No integer scores are 
changed, created or lost in either of these 
methods. No sign values are changed, and 
the total resulting scores will be identical for 
the two rank order aggregation models as 
long as the examination consists of an 
equivalent number of relevant and 
comparison stimuli.  
 
 The hypothesized advantage of the 
more complex HSS (Gordon & Cochetti, 1987; 
Gordon, 1999; Gordon, et al., 2000) Gordon 
et al., (2006) method of handling the 
examination scores is the potential 
application of a rank order scoring model to 
multi-facet examinations for which the 
variance of evidence connecting RQs is 
thought to be independent. Independence, in 
the realm of scientific testing, refers to the 
notion that the variance of the individual test 
items is not influenced by the variance of 
other test items. Independent test items in 
PDD examinations are therefore thought to 
provide differential diagnostic information 

about the examinee's role or level of 
involvement in the issue under investigation.  
 
 Honts and Driscoll (1988) describe the 
comparison of each relevant question to the 
average of summed rank scores of the 
comparison questions, and provided data 
from a statistical analysis, recommending 
cut-scores of +/2 as an optimal solution, but 
ultimately concluded that rank order 
transformations offer no criterion advantages 
and are more complicated to execute than the 
seven-position and three-position transforma-
tion models based on the work of Backster 
(1963a, 1963b). Nelson, Krapohl & Handler 
(2008) described the application of a Kruskal-
Wallace nonparametric ANOVA to evaluate 
between question variance when scoring 
multi-issue and multi-facet exams with the 
Objective Scoring System, version 3, 
algorithm. However, Nelson et al., (2008) 
employ the nonparametric ANOVA to evaluate 
variance only between the RQs, and not 
between the individual RQs and CQs.  
Neither Honts and Driscoll (1988) nor Nelson 
et al., (2008) describe a method for 
statistically evaluating independent variance 
among rank ordered question scores. Nelson 
et al. (2008) describe that they first evaluate 
the level of significance of the individual RQ 
sub-total. They then use the Kruskal-Wallace 
ANOVA as a second stage to show that test 
questions do not differ significantly before 
proceeding to make a classification of a 
screening test result as a whole.  
 
 In addition to the absence of 
statistical decision models and statistical 
classifiers, none of the previous studies on 
rank order scoring models for PDD have 
included any description of the statistical 
confidence intervals surrounding the reported 
accuracy estimates. Furthermore, previous 
studies have generally not included adequate 
descriptions of the normative data, with the 
exception of Krapohl, Dutton and Ryan 
(2001), from which statistical confidence 
intervals can be calculated. Statistical 
confidence intervals are important in the 
validation of scientific test methods because 
it is impossible to obtain data from the entire 
population of persons and accuracy 
calculations are therefore estimates, with 
corresponding levels of statistical confidence, 
of what would be observed if it were possible 
to test the entire population of persons.  
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 Previous studies on rank order TDA 
models have sometimes used decision rules 
and cut-scores that are not based on 
scientific studies. Gordon and Cochetti (1987) 
reported the use of +/-18 cut-scores for a 
ZCT with three questions and three charts. 
Gordon (1999) and Gordon et al. (2006) 
describe cut-scores of +/-13 for total scores 
and +/-4.5 for subtotal scores. Krapohl et al. 
(2001), in an optimization study on rank 
order scoring, reported that cut-scores of 
13/0, for grand total scores, provided optimal 
criterion validity. Later, Krapohl et al. (2008) 
published additional evidence that the 13/0 
cut-scores provided better criterion accuracy 
than the +/-13 cut-scores.  
 
Independence of the variance of test 
stimuli 
 All CQTs involve the evaluation of 
differential response between the RQs and 
CQs, and this is ultimately a matter of vari-
ance. Rank order models replace the natural 
variance of the population of all scored 
questions with a uniform rank variance. 
Rank variance is uniform in that the distance 
between items is always the same regardless 
of the natural variance or observed difference 
between items. Following the assignment of 
rank order scores, the rank order variance is 
partitioned into two portions: variance that 
describes the subset of RQs, and variance 
that describes the subset of CQs. Variance of 
these two groups can then be evaluated for 
statistically significant differences. Assump-
tions about the independence of test stimuli, 
as in multi-facet and multi-issue exams, 
require that the variance of RQs is further 
partitioned into variance belonging to the 
individual stimulus targets. 
 
 Rank order scoring models present 
nontrivial theoretical and statistical 
challenges when applied to multi-facet and 
multiple-issue examinations, for which 
Gordon (personal communication, 1/6/2011) 
has argued the test items vary independently. 
No mathematical solution has ever been 
described for the calculation of the statistical 
significance of independent variance of 
individual test items in a rank order scoring 
model. Rank order models are theoretically 
handicapped in that between-question 
variance is lost or nullified during the rank 
transformation. More importantly, rank order 
transformation violates the independence of 

test items by allowing the response 
magnitude variance of each question to affect 
the rank variance of every other test 
question. The variance of rank order scores 
are, by definition, non-independent. It is 
therefore unclear whether the expected 
improvement will result in increased criterion 
accuracy. Miritello (1999) described a 
procedure for rank ordering of individual 
questions, but provided no statistical decision 
model. Similarly, the procedural method 
described by Gordon (1999), for applying the 
rank order model to multi-facet and multi-
issue exams, has no solution for the 
calculation of a statistical classifier of the 
rank ordered response variance at the 
subtotal or question level, and is therefore a 
sorting procedure only.  
 
 Krapohl et al. (2008) recommended 
research for further optimization of the rank 
order TDA model. Those suggestions included 
the possibility of component weighting, 
refinement of physiological features, 
evaluation of single issue and multi-facet 
examination formats, adjustment of cut-
scores, and comparison with other 
algorithmic models. The present replication 
and extension of the Krapohl et al. (2008) 
study is intended to address these 
suggestions, in addition to Gordon's multi-
facet hypothesis.  
 

Method 
 
Data 
 Archival scores, including subtotal 
and grand total scores, were obtained from 
the Krapohl et al. (2008) study. Scores for the 
Krapohl et al. (2008) study were provided by 
the third named author in that study, who 
was reportedly selected for his expertise in 
the use of the rank order scoring model 
described by Gordon (1999), Gordon and 
Cochetti (1987), and Gordon et al. (2006). 
Krapohl et al. (2008) reported their sample as 
size N = 100. However, 99 examination scores 
were provided to the investigators and first 
author of this extension study. Results of the 
missing case were coded as inconclusive for 
these analyses.  
 
 The examinations in this study (N = 
100) were conducted using the Federal ZCT 
technique  (DoDPI, 2006; Light, 1999), a PDD 
technique that is widely taught at polygraph 
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schools accredited by the American Polygraph 
Association (APA) and recognized by the 
American Association of Police Polygraphists 
(AAPP). The three-question Federal ZCT, 
based on the Backster ZCT (Backster, 1963a 
1963b), is intended for event specific or 
evidentiary testing, and is considered to be 
among the most accurate diagnostic PDD 
techniques available at this time. All 
examinations consisted of three RQs, three 
probable-lie CQs, and three test charts.1  RQs 
in the Federal ZCT are named R5, R7 and 
R10. Confirmation for all examinations exists 
in the form of extra-polygraphic evidence 
such as physical evidence of guilt or 
innocence, physical evidence of guilt of an 
alternative suspect, or the confession of an 
alternative suspect.  
 
Analysis 
 Rank-order scores were evaluated for 
normality, and normative data were 
calculated for use in a Gaussian-Gaussian 
signal discrimination model, as described by 
(Barland, 1985). Bootstrap resampling was 
also used to calculate the unbiased sample 
variance of dimensional profiles of criterion 

accuracy using different decision rules. 
Bootstrap variance statistics were used to 
calculate the sums of squares for a series of 
one-way and two-way ANOVAs that were 
used to investigate the statistical significance 
of the effects of the multi-facet hypothesis on 
criterion accuracy. 
 

Results 
 
Normative parameters 
 A bootstrap of 10,000 iterations was 
used to calculate a distribution of bootstrap 
mean and standard deviations that were 
evaluated for normality. Bootstrap 
distributions are known to be normally 
distributed when the underlying data are 
normally distributed. Quantile plots, shown 
in Figures 1 and 2, show that the 
distributions of bootstrap means were 
sufficiently normal to assume the underlying 
distribution of scores to be normally 
distributed, and to proceed with the 
calculation of statistically optimal cut-scores 
for use in a Gaussian-Gaussian signal 
discrimination model.  

 
 
 

Figure 1. Q-Q plot for bootstrap mean deceptive scores. 
 

 
 
 
 
 
1 Senter and Dollins (2004) showed that inconclusives can be reduced by recording up to two more test charts, 
with no reduction in decision accuracy, and current field practices allow for the completion of three to five test 
charts, with no change in decision rules or cut-scores. 
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Figure 2. Q-Q plot for bootstrap mean truthful scores. 
 

 
 
 
 The mean deceptive grand total score 
was -18.920 (SD = 16.529). The mean 
truthful grand total score was 16.948 (SD = 
18.097). These values were mapped to the 
standard normal distribution to calculate 
lookup tables for the p-values and alpha 
levels for all possible cut-scores. Normative 
data for deceptive and truthful total scores 
are shown in Appendix A. Normative data 
were also developed for the sum of the first 
two RQs. The mean deceptive subtotal score 
for question R5 + R7 was -15.739 (SD = 

12.095). The mean truthful subtotal score for 
R5 + R7 was 11.279 (SD = 15.296). 
Normative data for deceptive and truthful 
scores of R5 + R7 are shown in Appendix B. 
Figure 3a shows a plot of the interaction of 
mean scores for the truthful and deceptive 
cases of the R5 + R7 and Grand Total scores. 
A two-way ANOVA, model x status, showed 
that there was no statistically significant 
interaction and no significant main effects for 
total scores of the R5 + R7 + R10 model and 
the R5 + R7 model.  

 
 

Figure 3a. Mean scores for R5 + R7 and Grand Total models. 
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Subtotal scores 
 The bootstrap mean for deceptive 
subtotals was -6.349 (SD = 8.794), and the 
bootstrap mean for truthful subtotals was 
5.648 (SD = 9.134). Figure 3b shows the 
interaction of mean subtotal scores for the 
truthful and deceptive cases. A 2 x 3 ANOVA 
comparison, question x status, showed there 
was a significant interaction effect for the 
difference in the R5, R7 and R10 scores 
between the truthful and deceptive cases (F 
1,294 = 5.980, p = .015). The significant 
interaction of question and case status 
precludes any interpretation of the main 
effects without further analysis. Figure 3b 
shows that the pattern of cell means for the 
relevant questions was different for truthful 

and deceptive cases, and that R10 may 
produce a different pattern of reaction than 
the other questions. Scores for R10 shifted in 
a positive direction for both truthful and 
deceptive cases. These trends may have more 
to do with the order of the questions in the 
sequence than the test question language. It 
is also possible the effect has more to do with 
semantic language than the behavioral target. 
It may be possible to mitigate position related 
effects through the rotation of the questions 
within successive test charts. One-way post 
hoc ANOVAs showed that the within-group 
differences were not statistically significant 
for either group with (F 2,147 = 0.124, p = 
.884) for the deceptive cases and (F 2, 147 = 
0.057, p = .944) for the truthful group.  

 
 

Figure 3b. Interaction of mean subtotal scores. 
 

 

 
 
Non-positive subtotal scores for confirmed 
truthful cases 
 Because subsequent planned analysis 
evaluated decision rules for which the 
subtotal scores may be permitted to trump 
the total score when making deceptive 
classifications, subtotal scores were 
evaluated for their sign value. Evaluation of 
the rank order scores from the experienced 
scorer revealed that 63.9% (95% CI = 62.1% 
to 65.6%) of the confirmed truthful cases had 
at least one non-positive (i.e. zero or negative 
integer) subtotal score. The greatest 

proportion of non-positive scores occurred at 
R7, for which 41.9% of the truthful cases had 
a non-positive score. Figure 4 shows a plot of 
the non-positive subtotals for the confirmed 
truthful cases. A one-way ANOVA shows 
there was no statistically significant 
difference in the rate of non-positive subtotal 
scores for the three RQs (F 2,147 = 2.530, p = 
0.080). However, this result was approaching 
a statistically significant level, with more 
non-positive subtotal scores at the second of 
three RQs. 
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Figure 4. Proportion of non-positive subtotal scores for confirmed truthful cases. 
 

 

 
 
Criterion accuracy and decision rules 
 Normative data were used to 
determine statistically optimal cut-scores, 
with alpha = .05 for both truthful and 
deceptive decisions. Cut-scores were 
determined for several decision rules, 
including: the Horizontal Scoring System 
(HSS) rule, Grand Total Rule (GTR), Two-
stage Rules (TSR) (Senter, 2004; Senter & 
Dollins, 2008a, 2008b), the R5 and R7 Rule 
(R57), and the Spot Score Rule (SSR) (Light, 
1999).  
 
Decision rules and statistically optimal cut-
scores for the HSS rule were as follows: 
 
1.  If any subtotal score is -22 (Bonferonni 

corrected alpha = .017 * 3 = .05) or lower, 
a decision of Deception Indicated (DI) is 
made, 

2.  If the sum of R5 and R7 is -14 or lower 
(alpha = .05), a decision of DI is made, 

3.  If the grand total scores is -13 (alpha = 
.05) or lower, a decision of DI is made, 

4.  If the subtotal of the first two RQ together 
is 5 or greater (alpha = .05), and no 
subtotal is -22 or lower, a decision of No 
Deception Indicated (NDI) is made, 

5.  If the grand total score is 9 (alpha = .05) 
or greater, a decision of NDI is made, and 

6.  All other results are inconclusive (INC). 

Decision rules and statistically optimal cut-
scores for the GTR were as follows: 
 
1.  If the grand total scores is -13 (alpha = 

.05) or lower, a decision of DI is made, 
2.  If the grand total score is 9 (alpha = .05) 

or greater, a decision of NDI is made, and 
3.  All other results are INC. 
 
Decision rules and statistically optimal cut-
scores for the TSR were as follows: 
 
1.  If the grand total scores is -13 (alpha = 

.05) or lower, a decision of DI is made, 
2.  If the grand total score is 9 (alpha = .05) 

or greater, a decision of NDI is made, 
3.  If the grand total is INC, and any subtotal 

score is -22 (Bonferonni corrected alpha = 
.017 * 3 = .05) or lower, a decision of DI is 
made, and 

4.  All other results are INC. 
 
Decision rules and statistically optimal cut-
scores for the R57 rule were as follows: 
 
1. If the sum of R5 and R7 is -14 (alpha = 

.05) or lower, a decision of DI is made, 
2. If the sum of R5 and R7 is 5 (alpha = .05) 

or greater, a decision of NDI is made, and 
3. All other results are INC. 
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Decision rules and statistically optimal cut-
scores for the SSR were as follows: 
 
1.  If any subtotal score is -9 (uncorrected 

alpha = .05) or lower, a decision of DI is 
made, 

2.  If all subtotal scores are 0 (corrected 
alpha = .05) or greater, a decision of NDI 
is made, and 

3.  All other results are INC. 
 
 A bootstrap of 10,000 resampled 
iterations of the N = 100 test results was 
used to calculate the standard deviations and 
statistical confidence intervals for the dimen-
sional profiles of criterion accuracy achieved 
by the different decision rules. Bootstrapping 
was used because it allows for easy 
calculation of a variance statistic for the 

proportion of categorical results while using a 
single sample. Table 1 shows the bootstrap 
accuracy profiles for the five decision rules. 
Accuracy profiles include mean, standard 
deviation, and 95% confidence intervals for 
several dimensions of criterion accuracy, 
including: overall percent correct, total 
inconclusives (INC), inconclusive truthful 
cases (T INC), inconclusive deceptive cases (D 
INC), sensitivity to deception, specificity to 
truthfulness, false-negative rate (FN), false-
positive rate (FP), positive predictive value 
(PPV), negative predictive value (NPV), percent 
correct for deceptive cases (D Correct), 
percent correct for truthful cases (T Correct), 
and the unweighted average of the percentage 
of correct decisions, excluding inconclusives, 
for truthful and deceptive cases. The 
unweighted average is more robust against 

 
 
 

Table 1. Accuracy profiles for different rank order decision rules with alpha = .05. 

Mean (SD)  
[95% Confidence Intervals] 

 
 

GTR 
.05/.05  

HSS 
.05/.05  

TSR 
.05/.05 

R57 
.05/.05  

SSR 
.05/.05  

Correct .876 (.035) 
[.806 to .945] 

.860 (.037) 
[.788 to .931] 

.876 (.035) 
[.806 to .945] 

.876 (.039) 
[.799 to .953] 

.766 (.048) 
[.671 to .860] 

INC .121 (.032) 
[.057 to .184] 

.080 (.027) 
[.028 to .133] 

.121 (.032) 
[.057 to .184] 

.281 (.044) 
[.194 to .367] 

.230 (.042) 
[.148 to .313] 

D INC .059 (.034) 
[<.001 to .125] 

.040 (.027) 
[<.001 to .093] 

.059 (.034) 
[<.001 to .125] 

.298 (.064) 
[.172 to .424] 

.059 (.033) 
[<.001 to .124] 

T INC .179 (.053) 
[.075 to .283] 

.119 (.045) 
[.031 to .208] 

.179 (.053) 
[.075 to .283] 

.258 (.061) 
[.138 to .379] 

.397 (.069) 
[.261 to .533] 

Sensitivity .812 (.055) 
[.704 to .92] 

.812 (.055) 
[.704 to .920] 

.812 (.055) 
[.704 to .920] 

.594 (.069) 
[.458 to .729] 

.931 (.035) 
[.864 to >.999] 

Specificity .713 (.063) 
[.590 to .836] 

.753 (.060) 
[.636 to .870] 

.713 (.063) 
[.590 to .836] 

.653 (.067) 
[.522 to .784] 

.237 (.060) 
[.119 to .356] 

FN .118 (.046) 
[.029 to .208] 

.138 (.049) 
[.042 to .234] 

.118 (.046) 
[.029 to .208] 

.098 (.043) 
[.015 to .182] 

<.001 (<.001) 
[<.001 to <.001] 

FP .098 (.042) 
[.015 to .181] 

.118 (.046) 
[.028 to .207] 

.098 (.042) 
[.015 to .181] 

.078 (.038) 
[.004 to .153] 

.356 (.068) 
[.224 to .489] 

PPV .892 (.047) 
[.800 to .983] 

.873 (.049) 
[.776 to .970] 

.892 (.047) 
[.800 to .983] 

.883 (.056) 
[.773 to .993] 

.722 (.056) 
[.613 to .831] 

NPV .858 (.054) 
[.753 to .964] 

.846 (.054) 
[.74 to .951] 

.858 (.054) 
[.753 to .964] 

.870 (.055) 
[.762 to .978] 

>.999 (<.001) 
[>.999 to >.999] 

D Correct .873 (.049) 
[.777 to .969] 

.855 (.051) 
[.754 to .955] 

.873 (.049) 
[.777 to .969] 

.858 (.060) 
[.74 to .976] 

>.999 (<.001) 
[>.999 to >.999] 

T Correct .879 (.052) 
[.778 to .981] 

.865 (.052) 
[.763 to .967] 

.879 (.052) 
[.778 to .981] 

.893 (.052) 
[.792 to .994] 

.399 (.091) 
[.222 to .577] 

Unweighted Avg. .876 (.036) 
[.806 to .946] 

.860 (.037) 
[.787 to .932] 

.876 (.036) 
[.806 to .946] 

.875 (.040) 
[.797 to .954] 

.700 (.045) 
[.611 to .789] 
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difference in the sample size of deceptive and 
truthful cases and differences in test 
sensitivity and specificity; it is therefore 
considered to be a more generalizable 
estimate of accuracy than the simple 
percentage of correct decisions. 
 
 Evaluation of the means, standard 
deviations, and statistical confidence 
intervals in Table 1 revealed that the R57 
model and SSR model differed significantly 
from the other models with significantly 
greater inconclusives for the R57 model, 
along with significantly greater inconclusives 
and weaker decision accuracy for the SSR 
model. The R57 and SSR models were 
removed from further analysis.  
 

 Figures 5 and 6 show the criterion 
accuracy levels for the HSS, GTR, and TSR. A 
series of 2 x 3 ANOVAs, case status x 
decision rule, was conducted to evaluate the 
differences in decision accuracy, error, and 
inconclusives rates for the three single issue 
decision rules: HHS, GTR, and TSR. No 
significant interaction or main effects were 
found for correct decision or errors. A 
significant interaction was found (F 1,294 = 
14.956, p < .001) for inconclusive results. 
Post hoc one-way ANOVAs showed there were 
no significant one-way effects, with (F 2,147= 
0.205, p = .814) for the deceptive cases and 
(F 2, 147 = 0.001, p = .482) for the truthful 
group. It is clear from Table 1 that 
inconclusive rates are significantly higher for 
truthful cases than deceptive cases.  

 
 
 
Figure 5. Accuracy of rank order scores with deceptive cases using different decision rules. 
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Figure 6. Accuracy of rank order scores with truthful cases using different decision rules. 
 

 

 
 
Computer algorithm results 
 The confirmed case sample was then 
evaluated using three computer scoring 
algorithms: the Objective Scoring System, 
version 3 ([OSS-3], Nelson et al., 2008), the 
Objective Scoring System, version 2 ([OSS-2], 
Krapohl & McManus, 1999; Krapohl, 2002), 
and a replication of the Probability Analysis 

algorithm (Kircher & Raskin, 1988; 2002; 
Nelson et al., 2008; Raskin et al., 1988). 
Results of this analysis are shown in Table 2, 
along with the accuracy profile for the rank 
order model, and reveal that all three of the 
algorithms achieved decision accuracy levels 
over 90% and inconclusive rates less than 
20%.  
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Table 2. Algorithm results with the confirmed case sample (N = 100) using recommended 
alpha levels. 

Percentile Scores 

  OSS-3 
.1./05 

OSS-2 
.07/.062

PA replication3

(.70/.30) 
Rank Order GTR 

.05/.05 

Correct .907 (.032) 
[.844 to .97] 

.914 (.031) 
[.853 to .975] 

.908 (.035) 
[.839 to .976] 

.876 (.035) 
[.806 to .945] 

INC .059 (.025) 
[.010 to .108] 

.143 (.035) 
[.074 to .211] 

.167 (.037) 
[.095 to .239] 

.121 (.032) 
[.057 to .184] 

D INC .081 (.038) 
[.007 to .155] 

.124 (.045) 
[.036 to .213] 

.171 (.054) 
[.065 to .277] 

.059 (.034) 
[<.001 to .125] 

T INC .038 (.030) 
[<.001 to .096] 

.160 (.050) 
[.062 to .258] 

.161 (.052) 
[.060 to .263] 

.179 (.053) 
[.075 to .283] 

Sensitivity .845 (.056) 
[.737 to .954] 

.785 (.064) 
[.661 to .910] 

.715 (.070) 
[.577 to .853] 

.812 (.055) 
[.704 to .92] 

Specificity .862 (.049) 
[.765 to .958] 

.783 (.054) 
[.677 to .889] 

.799 (.061) 
[.680 to .918] 

.713 (.063) 
[.590 to .836] 

FN .074 (.038) 
[<.001 to .149] 

.09 (.041) 
[.011 to .169] 

.113 (.051) 
[.013 to .214] 

.118 (.046) 
[.029 to .208] 

FP .100 (.041) 
[.020 to .180] 

.057 (.032) 
[<.001 to .120] 

.040 (.027) 
[<.001 to .093] 

.098 (.042) 
[.015 to .181] 

PPV .892 (.043) 
[.807 to .977] 

.932 (.038) 
[.857 to >.999] 

.946 (.037) 
[.873 to >.999] 

.892 (.047) 
[.800 to .983] 

NPV .921 (.042) 
[.839 to >.999] 

.897 (.049) 
[.801 to .992] 

.877 (.055) 
[.769 to .985] 

.858 (.054) 
[.753 to .964] 

D Correct .919 (.042) 
[.838 to >.999] 

.897 (.047) 
[.804 to .989] 

.863 (.06) 
[.745 to .982] 

.873 (.049) 
[.777 to .969] 

T Correct .896 (.043) 
[.812 to .980] 

.932 (.037) 
[.859 to >.999] 

.952 (.033) 
[.887 to >.999] 

.879 (.052) 
[.778 to .981] 

Unweighted Avg. .908 (.032) 
[.844 to .971] 

.914 (.031) 
[.853 to .975] 

.908 (.035) 
[.839 to .976] 

.876 (.036) 
[.806 to .946] 

 
 
 
 Decision accuracy, inconclusive rates, 
and error rates for the algorithm results were 
subject to a series of 2 x 4 ANOVAs, model x 
status, for which the mean percentages of 
correct decisions, errors, and inconclusive 
results are shown in Table 3 and Figures 7 
and 8. There was a significant interaction 
between the scoring algorithm and case 
status (F 1,392 = 79.964, p < .001) for correct 
decisions. One-way post hoc ANOVAs were 

completed to further investigate the difference 
in correct decisions for the algorithms within 
the truthful and deceptive groups. Within-
group differences were not statistically 
significant for either group, with (F 2,147 = 
0.708, p = .548) for the deceptive cases and 
(F 2,147 = 1.433, p = .234) for the truthful 
group, indicating there were no differences in 
overall decision accuracy for the four 
algorithm models. 

  
 
 

2 Alpha boundaries of .07 and .06 correspond to traditional cutscores of +6 and -6, normally used with the OSS-2. 
 
3 The Probability Analysis algorithm, was replicated by Nelson et al., (2008) from information available in published 
studies. The developers of the Probability Analysis algorithm have not published their discriminate function. The 
replication was trained independently through discriminate analysis with the OSS development sample used by 
Krapohl and McManus, 1999. 
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Table 3.  Correct decisions, errors, and inconclusive rates for four algorithms 
 

Deceptive Cases 

 OSS-3 OSS-2 PA Rank Order 

Correct 0.919 0.897 0.863 0.867 

Inc 0.080 0.124 0.171 0.063 

Error 0.073 0.090 0.113 0.124 

Truthful Cases 
 OSS-3 OSS-2 PA Rank Order 

Correct 0.895 0.932 0.951 0.876 

Inc 0.038 0.160 0.161 0.180 

Error 0.100 0.057 0.040 0.101 

 
 
 
 

Figure 7. Mean decision accuracy of four algorithms with deceptive cases. 
 

 
 
 
 
 A second two-way ANOVA, algorithm x 
status, for errors showed there was a 
significant interaction between the scoring 
algorithm and case status (F 1,392 = 77.990, 
p < .001) for errors. Post hoc one-way 
ANOVAs showed that Within-group main 
effect differences in errors were not 
statistically significant for the deceptive cases 
(F 2, 147 = 0.656, p = .580) or for the truthful 
cases (F 2, 147 = 1.422, p = .238), suggesting 

that overall error rates did not differ 
significantly for the four algorithms. 
 
 A third two-way ANOVA, algorithm x 
status, for inconclusive results showed there 
was a significant interaction between the 
scoring algorithm and case status when 
evaluating inconclusive results (F 1,392 
=181.029, p < .001). The main effects for 
scoring algorithm were not statistically 
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Figure 8. Mean decision accuracy of four algorithms with truthful cases. 
 

 

 
 
 
 
significant at the .05 level but were 
approaching statistical significance (F 1,392 
= 3.154, p .077). Post hoc one-way ANOVAs 
showed there were statistically significant 
differences in inconclusive rates for the four 
algorithms for both groups, with (F 2,147 = 
2.699, p = .047) for the deceptive cases and 
(F 2,147 = 5.039, p = .002) for the truthful 
group. The OSS-3 algorithm produced low 
inconclusive rates for both truthful and 
deceptive groups, while the OSS-2 and PA 
algorithms had higher inconclusives for both 
groups. The rank order algorithm produced 
low inconclusives for deceptive cases and 
higher inconclusive rates for truthful cases. A 
one-way ANOVA showed that the OSS-3 
algorithm produced significantly fewer 
inconclusives for truthful cases (F 1,98 = 
5.360, p = .022) when compared to the rank 
order model. 

Comparison of the rank order model with 
the Empirical Scoring System. 
 Rank order scores from the 
experienced scorer were then compared to the 
scores from a previous study by Handler, 
Nelson, Goodson and Hicks (2011) that 
involved a cohort of 19 inexperienced 
polygraph examiner trainees who used the 
Empirical Scoring System ([ESS], Blalock, 
Cushman & Nelson, 2009; Krapohl, 2010; 
Nelson & Handler, 2010; Nelson, Blalock, 
Oelrich & Cushman, 2011 in press; Nelson & 
Krapohl, 2011; Nelson et al., 2008) to 
evaluate the same confirmed case sample.4 
Table 4 shows the accuracy profiles for the 
ESS and rank order models, and Figures 9 
and 10 show the interaction of the percentage 
of correct decisions with inconclusives, 
errors, and inconclusive results. 

 
 
 
 
4 Nelson, the principal investigator and first author of the present study, has published studies on the ESS but has 
no financial or proprietary interest in the ESS. Nelson is a psychotherapist and field polygraph examiner employed 
as a researcher with the Lafayette Instrument Company which provides computer programming expertise and 
sales support for the ASIT HSS algorithm. Nelson is also the principal investigator and developer of the Objective 
Scoring System, version 3, a free and open source computer scoring algorithm for which he has no financial or 
proprietary interest. Handler, the second author, has also published studies on the ESS and OSS-3 algorithm, as 
a principal investigator and second author, and also has no proprietary interest in the OSS-3 or the ESS. 
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Table 4. Comparison of rank order and ESS criterion accuracy profiles 
 

Mean (SD) 
[95% CI] 

  Rank Order GTR 
.05/.05 

ESS 
.10/.05 

Correct .876 (.035) 
[.806 to .945] 

.902 (.030) 
[.842 to .958] 

INC .121 (.032) 
[.057 to .184] 

.030 (.017) 
[<.001 to .070] 

D INC .059 (.034) 
[<.001 to .125] 

.029 (.024) 
[<.001 to .087] 

T INC .179 (.053) 
[.075 to .283] 

.031 (.024) 
[<.001 to .087] 

Sensitivity .812 (.055) 
[.704 to .920] 

.867 (.049) 
[.762 to .959] 

Specificity .713 (.063) 
[.590 to .836] 

.883 (.045) 
[.784 to .960] 

FN .118 (.046) 
[.029 to .208] 

.088 (.040) 
[.020 to .178] 

FP .098 (.042) 
[.015 to .181] 

.102 (.044) 
[.021 to .196] 

PPV .892 (.047) 
[.800 to .983] 

.908 (.040) 
[.821 to .980] 

NPV .858 (.054) 
[.753 to .964] 

.896 (.044) 
[.804 to .977] 

D Correct .873 (.049) 
[.777 to .969] 

.895 (.046) 
[.800 to .978] 

T Correct .879 (.052) 
[.778 to .981] 

.909 (.041) 
[.814 to .980] 

Unweighted Average .876 (.036) 
[.806 to .946] 

.902 (.030) 
[.839 to .958] 
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Figure 9. Accuracy for HSS and ESS with deceptive cases 
 

 

 
 
 

Figure 10. Accuracy for HSS and ESS with truthful cases 
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 There were no statistically significant 
interaction effects or main effects for decision 
accuracy or errors for the rank order and 
ESS scoring models. However, there was a 
statistically significant interaction between 
scoring model and case status for 
inconclusive results (F 1,196 = 144.171, p < 
.001). Also, the main for scoring model effect 
was approaching a significant level for 
inconclusive results, (F (1,196 = 3.102, p = 
.080). Post hoc ANOVAs were completed to 
further investigate the difference in 
inconclusive rates for the ESS and rank order 
models within the truthful and deceptive 
groups. Within-group differences were not 
statistically significant for the deceptive 
group (F 2, 147 = 0.467, p = .496). 
Inconclusives were different at statistically 
significant rates for the truthful group (F 2, 
147 = 6.607, p = .012). The ESS model 
produced significantly fewer inconclusives 
with truthful cases. 
 
Potential improvements to the rank order 
scoring model 
 The confirmed case sample was 
evaluated using a rank order scoring model 
based on Kircher features, for which there is 
replicated evidence of validity (Harris et al., 
2000; Kircher & Raskin, 1988, 2002; Kircher, 
et al., 2005; Krapohl & McManus, 1999; 
Raskin et al., 1988). Data were measured 
using the Extract software (Harris, 1998), 
which makes automated measurements of 
the Kircher features, which were then 
assigned rank order scores via an automated 
implementation of the rank order model 
described by Gordon (1999), and Gordon and 
Cochetti (1987).  
 
 The EDA has been shown to provide 
the strongest diagnostic signal (Handler, 
Nelson, Krapohl & Honts, 2010; Harris & 
Olsen, 1994; Harris, et al., 2000; Kircher & 
Raskin, 1988, 2002; Kircher et al., 2005; 

Krapohl & McManus, 1999; Raskin et al., 
1988). The results of a linear discriminate 
analysis were published in a previous study 
(Nelson, Krapohl & Handler, 2008), showing 
the optimal weighting coefficients to be as 
follows: pneumograph = .19, electrodermal = 
.53, cardiograph = .28). In consideration of 
the emphasis on simplicity at the integer 
level, all EDA rank scores were multiplied by 
2 before the rank scores were partitioned into 
relevant and comparison groups. This 
practical result of doubling all EDA scores 
was to increase the average mathematical 
weight placed on the EDA data to ~.50.  
 
 A bootstrap resample of 10,000 
iterations was completed to calculate 
variance statistics and normative distribution 
parameters from the single sample. Truthful 
cases produced a mean weighted rank score 
of 14.9 (SD = 23.5), while the deceptive cases 
produces a weighted mean rank score of -
34.9 (SD = 26.5).  Appendix C shows the 
normative data for the weighted mean rank 
total scores. Weighting the EDA data 
produced a larger change in the normative 
data for the deceptive group than the truthful 
group, moving the deceptive mean score 
further from zero. 
 
 Two weighted mean rank models were 
evaluated. One model with alpha = .05 for 
deceptive and truthful classifications, with 
cut-scores at -24 and +9 for deceptive and 
truthful decisions. The other weighted rank 
model used alpha = .10 for deceptive and 
truthful classifications, with cut-scores at -16 
and 0 for deceptive and truthful decisions. 
Table 5 shows the accuracy profiles for the 
two weighed rank models, along with the 
accuracy profile for the unweighted rank 
model. Figures 11 and 12 show the 
interaction of mean percentiles for decision 
accuracy, errors and inconclusives for the 
weighted and unweighted rank order models. 
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Table 5. Accuracy profiles for a weighted rank order models 
 

Weighted Rank Order Model, mean, (SD), [CI] 

  
Unweighted 
Rank GTR 

.05/.05 

Weighted Rank – 
GTR 

.05/.05 

Weighted Rank – 
GTR 

.10/.10 

Correct .876 (.035) 
[.806 to .945] 

.938 (.031) 
[.878 to .998] 

.901 (.036) 
[.831 to .971] 

INC .121 (.032) 
[.057 to .184] 

.362 (.047) 
[.27 to .453] 

.194 (.036) 
[.123 to .266] 

D INC .059 (.034) 
[<.001 to .125] 

.322 (.056) 
[.212 to .431] 

.190 (.050) 
[.091 to .289] 

T INC .179 (.053) 
[.075 to .283] 

.399 (.077) 
[.248 to .55] 

.198 (.052) 
[.097 to .3] 

Sensitivity .812 (.055) 
[.704 to .92] 

.637 (.060) 
[.519 to .755] 

.727 (.063) 
[.602 to .851] 

Specificity .713 (.063) 
[.590 to .836] 

.563 (.076) 
[.415 to .711] 

.725 (.061) 
[.606 to .845] 

FN .118 (.046) 
[.029 to .208] 

.042 (.029) 
[<.001 to .099] 

.083 (.046) 
[<.001 to .173] 

FP .098 (.042) 
[.015 to .181] 

.038 (.024) 
[<.001 to .086] 

.076 (.036) 
[.006 to .146] 

PPV .892 (.047) 
[.800 to .983] 

.944 (.037) 
[.871 to >.999] 

.904 (.047) 
[.811 to .996] 

NPV .858 (.054) 
[.753 to .964] 

.931 (.048) 
[.837 to <.999] 

.899 (.054) 
[.792 to 1.005] 

D Correct .873 (.049) 
[.777 to .969] 

.938 (.043) 
[.855 to >.999] 

.897 (.056) 
[.788 to 1.006] 

T Correct .879 (.052) 
[.778 to .981] 

.937 (.04)0 
[.858 to >.999] 

.905 (.044) 
[.818 to .992] 

Unweighted 
Average 

.876 (.036) 
[.806 to .946] 

.938 (.030) 
[.878 to .997] 

.901 (.035) 
[.832 to .97] 
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Figure 11. Accuracy of weighted and unweighted rank order models with deceptive cases. 
 

 

 
 
 
 
Figure 12. Accuracy of weighted and unweighted rank order models with deceptive cases. 

 

 

 
 
 
 
 A series of 2 x 3 ANOVAs, status x 
model, was completed to evaluate any 
differences between the weighted and 
unweighted rank order models using the 
GTR. There were no significant interactions 

and no significant main effects for correct 
decisions.  
 
 The interaction of model and status 
was significant for errors (F 1,294 = 33.508, p 
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< .001). The main effect for model was 
approaching a statistically significant level (F 
1,294 = 2.735, p = .099). Post hoc one-way 
ANOVAs showed that within-group 
differences in error rates were not statistically 
significant for the truthful group (F 2,147= 
0.657, p = .520), though the weighted models 
did produce fewer FP errors. Error rates were 
different at statistically significant rates for 
the deceptive cases (F 2,147 = 3.232, p = 
.042). Table 12 shows that the use of 
electrodermal weighting can be expected to 
produce fewer FN errors.  
 
 There was a significant interaction of 
model and status for inconclusive results (F 
1,294 = 51.643, p = .001), and the main 
effect for model was also significant (F 1, 294 
= 10.087, p = .002). Post hoc ANOVAs for 
within-group differences were statistically 
significant for both groups with (F 2,147 = 
14.003, p = <.001) for the deceptive, and (F 
2,147 = 8.547, p = <.001) for the truthful 
group. The weighted model with alpha = .05 
produces more inconclusives than the other 
models. 
 

Discussion 
 
 These results do not support the 
multi-facet hypothesis regarding rank order 
scores with the Federal ZCT.  No independent 
rank order variance was found among the 
different RQs within the groups of truthful 
and deceptive cases. Results from these 
analyses do not support the hypothesis that 
interpreting between-question response 
variance will increase criterion accuracy, and 
do not support the hypothesis that R10 
represents a distinct issue that should be 
scored separately from the other questions.  
 
 Evidence of support for the multi-facet 
hypothesis would have to be observed as 
improved criterion accuracy when using 
specialized decision rules intended to 
partition and interpret independent between-
question variance and differential meaning of 
the evidence connecting question. Instead, 
HSS decision rules weaken the criterion 
accuracy of the Federal ZCT. Criterion results 
using the SSR provide additional evidence 
that rank order numerical transformations 
are ineffective at partitioning and using 
independent between-question variance to 
increase test accuracy. The SSR does 

produce a high level of test sensitivity and 
low FN errors, but the cost is weak overall 
test accuracy and test specificity that is so 
low that the chance of a truthful person 
passing the test is significantly less than 
chance (p < .001). The high proportion of 
non-positive subtotal scores among the 
confirmed truthful cases (63.9%) will mean 
that any decision rule that permits a subtotal 
score to supersede the grand total score 
could result in test specificity levels that are 
weaker than chance.  
 
 The GTR, involving the sum of the R5, 
R7 and R10 subtotals, provides the highest 
level of criterion validity, as measured by 
decision accuracy, inconclusives, and error 
rates for the truthful and deceptive groups. It 
is unlikely that field examiners will be able to 
achieve any increase in criterion accuracy 
through attempts to make use of observed 
differences in reactions to individual RQs in 
the Federal ZCT when using the rank order 
model. Observed differences in RQs may be 
attributable to the position of the question in 
the test question sequence, and may also be 
due to semantic language and not the 
behavioral concern. Positional effects might 
be mitigated by rotation of the RQs in 
subsequent test charts. Additional research 
is needed in this area. 
 
 Although the multi-facet hypothesis is 
not supported, a number of important 
findings do begin to emerge from the results 
of this study. These analyses show that a 
rank order model is capable of producing 
numerical scores for which the variance of 
grand total scores is sufficiently normally 
distributed to develop normative data that 
can be used to calculate an inferential level of 
statistical significance or probability of error 
for individual test results. Normative data can 
be used to make evidence-based decisions 
about the selection of statistically optimal 
cut-scores that will satisfy requirements for 
decision accuracy and inconclusive rates.  
 
 Results from these analyses prompt a 
question as to whether the failure of the 
multi-facet hypothesis to increase criterion 
accuracy is attributable to deficiencies in the 
ability of a rank order transformation model 
to effectively partition between-question 
variance, or to deficiencies in the 
effectiveness of multi-facet questions to elicit 
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between-question variance. A tentative 
answer can be formulated through a 
convergence of existing knowledge. It is 
known that rank order transformation 
schemes systematically replace the assumed 
independent between-question variance with 
non-independent rank order variance before 
attempting to evaluate between-question 
variance. It is also known that the TSR does 
reduce inconclusives with other TDA models. 
The absence of any criterion effect for the 
TSR with rank order scores is therefore 
cautiously interpreted as an artifactual result 
of the overall bluntness of rank order 
transformations and the replacement of 
between-question variance with uniform rank 
variance for which the variance of each 
question affects every other question.  
 
 The high rate of non-positive subtotal 
scores among the truthful cases provides 
further evidence that the rank order model is 
ineffective at partitioning and using between-
question variance to increase criterion 
accuracy. If the study data are considered to 
be representative of rank order scores that 
can be expected in field circumstances then it 
may be unwise with our current evidence to 
employ decision rules that allow the subtotal 
scores to supersede the grand total score.  
 
 An array of presently available 
computer algorithms appear to provide 
criterion accuracy that is as good as or better 
than the results achieved by the single expert 
scorer who provided rank order scores for the 
Krapohl, Gordon and Lombardi (2008) study.  
There were no significant differences in 
decision accuracy or error rates for the rank 
order model and three algorithms: OSS-3, 
OSS-2, and a replication of the Probability 
Analysis algorithm.  However, there are 
differences in inconclusive rates among the 
four TDA models, with fewer inclusive results 
using the OSS-3. The absence of differences 
in accuracy and error rates indicates the 
observed differences inconclusives are related 
to increases in test sensitivity and test 
specificity rates for the OSS-3 algorithm. This 
should be the focus of future research. 
 
 Although there is some observed effect 
for improved decision accuracy for the ESS, 
compared to the rank order model, the 
difference is not significant. The rank order 
model has significantly more inconclusives 

for truthful cases compared to the ESS, and 
this corresponds to weaker test specificity. Of 
great importance is that the ESS scores were 
obtained not from a single experienced scorer 
but from a cohort of inexperienced polygraph 
examiner trainees. The results of a single 
expert scorer may be less likely to generalize 
to field settings, in which skill and experience 
vary considerably, than results from a cohort 
of inexperienced scorers. 
 
 Weighted and unweighted models 
produce significantly different criterion 
accuracy profiles, and the results indicate 
that component weights may affect errors 
and inconclusives differently among truthful 
and deceptive cases. Weighting the EDA data 
produces a larger change in the normative 
data for the deceptive group than the truthful 
group, moving the deceptive mean score 
further from zero. There is no significant 
effect for differences in decision accuracy for 
the weighted and un-weighted models. There 
is, however, a significant reduction in false-
negative errors for the weighted EDA rank 
order model, indicating that weighting the 
EDA data increases test accuracy for 
deceptive examinees. All rank order models in 
this study produce more FN errors than FP 
errors, and the difference is greatest for the 
unweighted model. Weighted models produce 
higher rates of inconclusive results than the 
unweighted model. This difference is loaded 
on the deceptive cases and was greater when 
the data were evaluated at conservative alpha 
boundaries (a = .05). This is interpreted as an 
artifact of the bluntness of the nonparametric 
rank order transformation model. 
 
 The optimal weighted rank model is 
achieved with alpha = .10 for both deceptive 
and truthful cases. This model achieves a 
bootstrap mean rate of correct decisions at 
90% with 19% inconclusives. It is unlikely 
that further optimization or the use of 
asymmetrical alpha boundaries will produce 
more favorable results. More conservative 
alpha boundaries do not increase criterion 
accuracy and only increase the occurrence of 
inconclusive results. We again attribute this 
to the overall bluntness of the rank order 
transformation model. 
 
Limitations 
 The present study, like all studies, is 
limited in some unavoidable ways, the first of 
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which is the sample itself which was 
constructed as a matched random sample 
selected from the confirmed case archive held 
at the Department of Defense.  Extant infor-
mation includes only simple demographics 
including age and gender of the examinee, 
general health and medications. Available 
information also includes the agency, and 
decision results from the original examiner 
and quality control personnel, along with the 
type of information available to confirm the 
status of each case. It is known that some of 
the results for the original examiners were 
incorrect and that some of the cases 
represent false-positive or false-negative error 
potentials in field settings. Some field 
examiners, including Gordon (1/6/2011, 
personal communication), have registered 
comments about a high level of difficulty in 
scoring the sample examinations. The fact 
that a number of scoring models, including a 
rank order model, and scores with widely 
varied levels of experience, have achieved a 
high level of criterion accuracy serves to 
reduce our concerns about the difficulty and 
representativeness of the sample data. For 
the purpose of acquiring new knowledge from 
the present study however, the sample is 
assumed to be representative.  
 
 A second, more troubling, limitation 
involves the cohort of participants who 
provided scores for this study.  A single 
selected expert scorer cannot be considered 
representative of the population of average 
examiners working in various field settings 
with varying levels of experience, supervision, 
and continuing education. Criterion results 
and normative data based on scores from a 
cohort of scorers with a more average level of 
experience and training can be expected to 
generalize more effectively to field settings 
than norms based on data obtained from a 
single highly regarded expert. Additionally, it 
is not possible to study interrater reliability 
with a single scorer.  None of the existing 
published studied on the rank order model, 
with the exception of Honts and Driscoll 
(1987), include any evidence or statistical 
description of interrater agreement, which 
limits our ability to consider it as a 
generalizable scoring model. 
 
 A related limitation is that the rank 
order model requires more than a simple 
dichotomous choice between the stronger of 

two reactions. It requires a complex process 
involving the comparison and ranking of all 
reactions at once. This raises concerns about 
reliability if the procedures for measurement 
and ranking are not automated. As there is 
no remedy for this limitation, other than 
automating the measurement and ranking 
procedures, we accept optimistically that the 
scores from a single experienced examiner 
are still somewhat informative. 
 
 An overarching limitation exists in the 
form of naive modeling, in which normative 
data are developed from the same data that is 
used to provide evidence of model 
effectiveness. Naive modeling is considered to 
be optimistic, and there is an increased 
tendency for the model and normative data to 
“overfit” a single sample used for both 
development and validation of normative 
data. The result will be an optimal fit between 
a normative model and the data used to 
demonstrate the effectiveness of the 
normative model. The results of these 
conditions will be weak generalizability when 
compared with models for which validity is 
demonstrated using a holdout or validation 
sample that is independent of the 
development sample.  
 
 Computer based analytic models such 
as bootstrap resampling, Monte Carlo models 
and randomized methods do not correct 
sampling deficiencies.  Bootstrap resampling 
was used in this analysis to calculate 
statistics such as sampling variance and 
statistical confidence intervals that cannot 
otherwise be obtained from a single sample 
without exhaustive difficulty. These statistics 
are used to describe the range of expected 
bias and potential variance that can be 
expected in validation experiments that use 
other data. It is always preferable to perform 
model development activities on one sample 
and then complete subsequent validation 
samples using a separate sample. It is 
reasonable to expect some shrinkage or loss 
of effectiveness and criterion accuracy rates 
when the normative data and cut-scores are 
applied to a different sample of rank order 
scores from a different cohort of scorers. 
These analyses should be replicated in future 
studies based on independent sample data. 
 
 Another limitation of the present 
study is that the normative data developed in 
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this study pertain only to event-specific ZCT 
examinations with three RQs, three CQs, and 
three test charts. Application of these 
statistical norms to other techniques is not 
warranted. Additionally, the rank order model 
requires an equal number of relevant and 
comparison questions, and is considered 
non-robust against missing, artifacted or 
uninterpretable data. Future research should 
evaluate alternatives for achieving some form 
of replacement that will improve the 
robustness of the rank order model.  
 
 Some readers will inevitably note that 
the ASIT HSS was designed for use with the 
Integrated Zone Comparison Technique (IZCT 
(Gordon et al., 2000, Gordon et al., 2006)5 
which adds many complex assumptions to 
the basic structure of the single issue ZCT. 
This study is not intended to evaluate the 
IZCT, and is limited to an extended analysis 
of the previous study by Krapohl et al. (2008). 
To the extent that the basic structure and 
principles of the event-specific three-question 
ZCT questions sequence is considered simple 
and robust, it is hoped that the information 
in this study can provide some useful and 
generalizable information. In the strictest 
sense, the application of these normative data 
to the IZCT is unknown. Although caution is 
always warranted, there is little to be gained 
from a rigid perspective that prevents the 
acquisition and application of new 
knowledge. To the extent that both the 
Federal ZCT and the IZCT are event specific 
single issue examination formats, the use of 
these normative data may be somewhat 
justifiable in the absence of normative data 
specific to the IZCT.  
 
 Another, more troubling, complication 
regarding the application of these statistical 
norms to the IZCT will be that the IZCT 
testing procedures involve the reversal of the 
comparison-relevant question sequence 
during the third test chart (Gordon et al., 
2000, 2006), resulting in relevant questions 
that are presented following a neutral 
question and before a comparison stimulus. 

It is theorized by Gordon et al. that reversal 
of the presentation of comparison and 
relevant stimuli reduces testing bias. 
However, Gordon et al. provide no data to 
support this claim and neglect to 
acknowledge that no test can be biased until 
the results are interpreted using normative 
data. The expected effect from the reversal of 
the comparison-relevant question sequence 
will be a shift of scores in the negative 
direction, increasing test sensitivity to 
deception. Corresponding decreases in test 
specificity, along with increased FP errors 
and increased inconclusives among truthful 
cases, can also be expected under these 
circumstances. Krapohl (2006) reported that 
relevant questions immediately preceded by 
neutral questions produce significantly lower 
scores than relevant questions preceded by 
comparison questions for both truthful and 
deceptive examinees. In this respect, the IZCT 
violates the basic principle of structural 
validity that comparison stimuli should 
precede the relevant stimuli. Because the 
normative data in this study were developed 
from Federal ZCT examinations, which 
conform to the basic principle of presenting 
comparison before relevant stimuli, the 
application of these norms to examinations 
that include the altered question sequence 
may not be justifiable. However, in 
consideration of the robustness of the event-
specific three-question ZCT, there may be 
little difference between the effectiveness of 
the Federal ZCT and the IZCT if the IZCT is 
conducted without the alteration of the 
comparison-relevant sequence in the third 
test. 
 
 It is unknown to what degree 
normative data for a weighted rank order 
model based on Kircher features (Kircher & 
Raskin, 1998, 2002; Krapohl & McManus, 
1999; Raskin, et al., 1988) will generalize to 
examinations scored using the alternative 
features described by Gordon (1999), for 
which there is no published statistical 
evidence of their structural coefficients or 
structural validity. Examination scores that

 
 
 
 
5 The IZCT is a proprietary PDD format that is taught at and used by examiners trained at the Academy for 
Scientific Investigative Training, for which Gordon, the primary author of the 1987, 1999 and 2006 studies, and 
second author of the Krapohl et al (2008) study, has a financial and proprietary interest. 
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are derived from alternative physiological 
features may lead to unpredictable results. In 
consideration of the volume of scientific 
evidence in support of the validity and 
effectiveness of the Kircher features, the 
suggestion for use of an alternative feature 
model without substantial scientific proof 
seems ill-advised. A conservative argument 
would hold that scores obtained from an 
alternative feature model should not be 
evaluated using normative data based on 
Kircher features. A more generous argument 
might suggest that regardless of the 
unsubstantiated assumptions of the 
alternative features, the alternative features 
appear to place primary emphasis on the 
same robust primary features as the Kircher 
features. When considering the bluntness of 
rank order models, it may be unlikely that 
different rank order scores would be achieved 
by the alternative physiological features. 
Regardless of their practical similarity, an 
evidence-based approach to PDD test 
validation would have to require that any 
suggestion to use an alternative feature 
model must be supported not only by proven 
theoretical assumptions but by a volume of 
published and credible research evidence at 
least equivalent to that which supports the 
validity of the Kircher features.  Construct 
and structural validity, and the structural 
coefficient model, of the alternative 
physiological features from Gordon (1999) 
should be the focus of future research, and 
this should be completed before advocating 
the use of the alternative features in field 
settings.  
 
 Another unstudied concern will be the 
effect of conducting additional PDD test 
charts when the results of the first three 
charts are inconclusive. Field testing 
protocols for seven-position and three-
position numerical scoring (DoDPI, 2006a; 
DoDPI, 2006b, Handler, 2006; Handler & 
Nelson, 2008; Raskin & Honts, 2002) allow 
the collection of additional test charts if the 
results are inconclusive for the first three 
charts. Field practices for other TDA models 
do not involve changing the decision 
thresholds when data are collected from 
additional test charts. When considering that 
rank order total scores tend to be much 
larger than scores from other numerical 
scoring models, normative data for rank order 
scores from three charts should not be 

considered generalizable to exams that 
include additional test charts. Future 
research should investigate the normative 
data and optimal cut-scores for scoring 
additional test charts with the rank order 
model. 
 

Recommendations 
 
 Of great importance is the potential 
for improvements to the rank order TDA 
model, and a number of recommendations 
can be made from this study. Until such time 
as there is evidence of increased criterion or 
construct validity for an alternative set of 
physiological features, rank order models 
should employ the Kircher Features. 
Weighting the EDA component will also 
improve the criterion accuracy profile of the 
rank order model, as does the use of 
statistical norms and optimal cut-scores. 
Because the criterion accuracy level of the 
rank order TDA model hangs precariously 
close to the boundaries of 90% or better 
decision accuracy with 20% or fewer 
inconclusives, changing or neglecting to use 
statistically optimal cut-scores will most 
likely result in suboptimal results, including 
the potential for decreased decision accuracy, 
increased errors, and increased 
inconclusives. Decision rules should be based 
on the simple and robust grand total rule, 
which also provides the highest level of 
criterion accuracy. Attempts to use subtotal 
scores when interpreting the results of rank 
order scores are not justified mathematically, 
and are not supported by these data. 
 
 Future research should focus on the 
refinement of improved statistical norms for 
manual scores of a weighted rank order 
model. Normative data should be obtained 
from a cohort of scorers for whom it can be 
reasonably anticipated their scores will be 
representative of, and generalizable to, the 
average examiner working in field settings. 
Attempts to use a single expert scorer to 
calculate generalizable criterion levels or 
normative data are misguided. Future 
research should also further investigate the 
validity of the multi-facet hypothesis 
regarding the Federal ZCT when scored with 
other TDA models. Additionally, the observed 
proportion of non-positive subtotals among 
the truthful cases in this study suggests the 
need for similar analysis with other samples 
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and other TDA models. Because the 
normative data from this study pertain only 
to three-question ZCT examinations, future 
research on rank order TDA models should 
develop normative data for different PDD 
exam formats. All developers of PDD TDA 
models face an obligation to develop and 
publish normative data and statistical 
evidence of both structural and criterion 
validity.  It will be increasingly important to 
provide evidence in support of the validity of 
all aspects and all assumptions that underlie 
a PDD TDA model.  
 

Conclusions 
 
 Rank order transformation models, 
while statistically simple, may increase 
procedural complexities in field settings, as 
they require field examiners to make a larger 
number of comparative decisions than do 
simpler transformation models. Despite their 
procedural complexity rank order models are 
considered blunt, and nonparametric 
methods are known to have weaker statistical 
power compared to parametric alternatives. 
In addition, rank order models lack both 
mathematical justification and evidence in 
support of the multi-facet hypothesis for 
decisions based on subtotal scores. A simpler 
procedural model may provide important 
advantages over a more complex model if the 
criterion accuracy rates can be demonstrated 
to be as good or better. Of course, computers 
can automate complex procedures with 
perfect reliability.  
 
 Although the use of computerized 
statistical and development methods will 
become increasingly common, it will remain 
important that field testing protocols 
intended for manual TDA tasks be distilled to 
their simplest procedural solutions. 

Procedural simplicity will help to optimize 
interrater reliability, skill acquisition, and 
skill retention. As the number of procedural 
requirements increase, so do the 
opportunities for errors and interrater 
disagreement. Correspondingly, interrater 
agreement is known to increase as procedural 
requirements decrease. A minor increase in 
procedural demands may be acceptable if 
there are corresponding significant increases 
in criterion accuracy.  
 
 In this study, three computer 
algorithms and one other manual scoring 
protocol produced raw frequencies that 
exceeded those of the rank order model; 
though the differences were not significant. 
The procedurally complex rank order model 
did not outperform any of the other models in 
terms of raw frequencies or statistically 
significant increases on criterion accuracy.  
 
 Finally, although the evidence does 
not support the multi-facet hypothesis, and 
suggests that the rank order model provides 
no advantages over other TDA models, the 
results of this extension study do support the 
validity of the rank order TDA model as 
potentially capable of providing a high level of 
decision accuracy and inconclusive rates that 
are within acceptable limits when applied to 
the Federal three-question ZCT. Results of 
this study further suggest that rank order 
TDA models are most effective when based on 
scientifically valid features, validated 
structural models involving weighted EDA 
scores, and grand total decision rules with 
cut-scores determined via statistical norms. It 
will be important to replicate this study with 
a cohort of less experienced scorers before 
endorsing these results and statistical norms 
as highly generalizable to field settings. 
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Appendix A 
 

Normative data for rank order grand total scores of three question ZCT examinations 
 

Mean Truthful Score: +16.9 (SD = 18.1) 
Mean: Deceptive Score: -18.9 (SD = 16.5) 

 
 

Total Deceptive Scores Total Truthful Scores 
Score p-value Score p-value 

-25 0.010 20 0.009 

-24 0.012 19 0.011 

-23 0.014 18 0.013 

-22 0.016 17 0.015 

-21 0.018 16 0.017 

-20 0.021 15 0.020 

-19 0.023 14 0.023 

-18 0.027 13 0.027 

-17 0.030 12 0.031 

-16 0.034 11 0.035 

-15 0.039 10 0.040 

-14 0.044 9 0.046 

-13 0.049 8 0.052 

-12 0.055 7 0.058 

-11 0.061 6 0.066 

-10 0.068 5 0.074 

-9 0.076 4 0.083 

-8 0.084 3 0.092 

-7 0.093 2 0.103 

-6 0.102 1 0.114 

-5 0.113 0 0.126 

-4 0.124 -1 0.139 
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Appendix B 
 

Normative lookup data for rank order R5 + R7 scores 
 

Mean Truthful Score: +11.3 (SD = 15.3) 
Mean: Deceptive Score: -15.7 (SD = 12.1) 

 
 

R5 + R7 Deceptive 
Scores 

R5 + R7 Truthful 
Scores 

Score p-value Score p-value 

-25 0.009 20 0.002 

-24 0.011 19 0.002 

-23 0.013 18 0.003 

-22 0.015 17 0.003 

-21 0.017 16 0.004 

-20 0.020 15 0.006 

-19 0.024 14 0.007 

-18 0.028 13 0.009 

-17 0.032 12 0.011 

-16 0.037 11 0.014 

-15 0.043 10 0.017 

-14 0.049 9 0.020 

-13 0.056 8 0.025 

-12 0.064 7 0.030 

-11 0.073 6 0.036 

-10 0.082 5 0.043 

-9 0.092 4 0.051 

-8 0.104 3 0.061 

-7 0.116 2 0.071 

-6 0.129 1 0.083 

-5 0.144 0 0.097 

-4 0.159 -1 0.112 
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Appendix C 
 

Normative data for weighted rank order scores 
 

Mean Truthful Score: +14.9 (SD = 23.5) 
Mean: Deceptive Score: -34.9 (SD = 26.5) 

 
 

Weighted Deceptive 
Scores 

Weighted Truthful 
Scores 

Score p-value Score p-value 

-25 0.045 25 0.012 

-24 0.049 24 0.013 

-23 0.053 23 0.014 

-22 0.058 22 0.016 

-21 0.063 21 0.017 

-20 0.069 20 0.019 

-19 0.074 19 0.021 

-18 0.080 18 0.023 

-17 0.087 17 0.025 

-16 0.094 16 0.024 

-15 0.101 15 0.023 

-14 0.109 14 0.032 

-13 0.117 13 0.035 

-12 0.126 12 0.038 

-11 0.135 11 0.042 

-10 0.144 10 0.045 

-9 0.154 9 0.049 

-8 0.164 8 0.053 

-7 0.175 7 0.057 

-6 0.186 6 0.061 

-5 0.198 5 0.066 

-4 0.210 4 0.071 

-3 0.223 3 0.076 

-2 0.235 2 0.082 

-1 0.249 1 0.088 

-0 0.262 0 0.094 

-1 0.276 1 0.100 

-2 0.290 2 0.107 
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