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Abstract 
The authors replicated and extended the work of earlier studies on the Empirical Scoring System 
(ESS) by calculating criterion accuracy profiles for the ESS and two other scoring systems: 7-
position and 3-position. ESS results were also compared to an unweighted ESS model. Data were 
obtained from a cohort of inexperienced polygraph examiner trainees who evaluated a sample of 
confirmed single-issue three-question zone comparison test (ZCT) exams (N = 60) from a confirmed 
case archive constructed by the Department of Defense during 2002. Results are provided from a 
step-wise ROC analysis of the nonparametric transformation of visibly perceptible response 
magnitude differences to numerical scores using the bigger-is-better rule. Inexperienced scorers 
produced results that were equivalent to those of previous studies with 86% decision accuracy 
(95% CI = 76% to 95%). Ten percent (10%) of the results were inconclusive (95% CI = 3% to 17%). 
There were no statistically significant differences in decision accuracy or errors for the ESS, 7-
position and 3-position systems. However, results with the ESS tended to produce significantly 
fewer inconclusive results with significant increases in test sensitivity to deception. There were no 
significant differences in false-positive or false-negative errors for the ESS, 7-position, 3-position, 
or unweighted ESS models. Results from this study provide additional support for the validity of 
the ESS. Continued interest in the ESS is recommended.  
 
 
 

“Divide each difficulty into as many parts as is feasible and necessary to resolve it.” 
Rene Descartes 

 
 
 
 The Empirical Scoring System (ESS; 
Blalock, Cushman & Nelson, 2009; Handler, 
Nelson, Goodson, & Hicks, 2010; Krapohl, 
2010; Nelson et al., 2011: Nelson & Krapohl, 
2011; Nelson, Krapohl & Handler, 2008) was 
developed with the goal of establishing an 
evidence-based method for manually scoring 
comparison question tests (CQT) in 
psychophysiological detection of detection 
(PDD) settings. The ESS was designed around 
the simplest available solutions that anchor 
the procedural and empirical validity of the 
CQT. It is premised on a requirement for 
published evidence of validation for all 
procedures and assumptions that define the 

ESS, including physiological features, 
numerical transformations, decision rules, 
and cutscores.  
 
 The present study is a replication and 
extension of earlier studies on the ESS, using 
a cohort of inexperienced participants who 
provided blind scores using a sample of 
confirmed field exams from criminal 
investigations. Analyses include the 
comparison of criterion validity, errors, and 
decision agreement between the ESS and 
other scoring systems, including an 
unweighted version of the ESS, 7-position and 
3-position scoring systems. 

 
 
 
 
1 The views expressed in this article are those of the authors, and do not necessarily represent the opinions or 
policies of Lafayette Instrument Company, the US Government or the Department of Defense. The authors are 
grateful to Chuck Slupski of the American International Institute of Polygraph and the seven trainees who 
participated in this study. 
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Method 
 
Participants 
 A cohort of seven inexperienced 
polygraph examiners participated in this 
study. Participants were trainees in their fifth 
week of instruction at a polygraph school 
accredited by the American Polygraph 
Association. Participation in the study was not 
mandatory, and had no effect on the 
employment, performance grades, or training 
status of the participants. Five of the seven 
participants were experienced law 
enforcement investigators with an average of 
more than 10 years in policing. The remaining 
two participants had completed their 
undergraduate degrees in social and 
behavioral sciences. Six of the participants 
were male, one female. There were no trainees 
in the cohort who did not participate in the 
study and age data for the cohort were not 
collected. 
 
Sample Data 
 Sample data were confirmed PDD 
examinations (N = 60) obtained from the 
confirmed case archive at the National Center 
for Credibility Assessment. All sample 
examinations were single-issue criminal 
investigation exams conducted using the 
Federal Zone Comparison Technique (ZCT) 
question sequence. All cases consisted of 
three relevant questions, three probable-lie 
comparison questions and three test charts. 
Thirty cases were confirmed as truthful and 
thirty matching cases were confirmed as 
deceptive. Cases were randomly assigned to 
six subsets of ten cases each, with no 
requirement for an equal number of deceptive 
and truthful cases within the six subsets. 
 
Design and Analysis 
 Each of the seven participants was 
randomly assigned two different subsets of 10 
cases to score. Study participants scored the 
first subset using the 7-position system after 
eight hours of instruction on the procedures 
described by the Department of Defense 
Polygraph Institute (2006). No feedback was 

provided to the participant regarding 
performance during or after the 7-position 
scoring task. Participants scored a second 
subset of different cases the following day 
after receiving two hours of instruction in 
using the ESS. Each examination was scored 
by at least one participant during each of the 
two scoring conditions. Because six subsets of 
cases were randomly assigned to the seven 
participants, two of the subsets were scored 
by two participants during each of the two 
scoring conditions. None of the examinations 
were scored more than once by any of the 
participants and no participant scored the 
same case using both scoring methods.  
 
 A total of 140 scored results were 
obtained from the study participants: 70 
scores using the 7-position scoring system, 
and 70 using the ESS. ESS scores were later 
reduced to their unweighted equivalents by 
dividing the electrodermal activity scores in 
half. Seven-position scores were also reduced 
to their 3-position counterparts. Monte Carlo 
models were later seeded with the sub-total 
and total scores.  
 
Empirical Scoring System 
 A complete description of the ESS 
procedures was provided by Nelson et al., 
(2011). A brief description of the procedures 
can be found in Appendix A, and normative 
reference data for ESS scores of ZCT 
examinations can be found in Appendix B. 
Among the most important principles central 
to the ESS is the bigger-is-better rule, used to 
assign scores based on visibly observable 
differences when evaluating responses to 
relevant and comparison stimuli. 
 
 Bigger is Better Rule. We were unable 
to locate any previously published study of the 
efficacy of the bigger-is-better rule. To 
investigate the validity of this rule, a step-wise 
analysis was conducted of the Area Under the 
Curve (AUC) using the Receiver Operating 
Characteristic (ROC) statistic (Swets, 1996).2  
Data were expressed in mathematical ratios of 
the linear measurements of the physiological

 
 
 
 
2 AUC can be understood as the ratio or proportion of true positives to false positives when calculated across all 
possible cutscores. A test with higher sensitivity and higher specificity will produce a greater AUC, and a 
theoretically perfect model will produce an AUC of 1.  
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data, using automated measurements taken 
from an archival sample (N = 292) that was 
previously used by Nelson et al. (2008). Peak 
AUC was calculated using progressively 
smaller response magnitude differences. 
 
 Ratios were reduced progressively in a 
step-wise manner, independently for each 

component, and for the weighted composite of 
all components, to locate the peak AUC at 
which the ratio of true positive and false 
positive results was most efficient. Table 1 
shows the results of the step-wise analysis. 
Table 2 shows the peak AUC values, and 
Figure 1 shows the ROC curves for the 
components and weighted composite. 

 
 
 

Table 1. Step-wise ROC results. AUC (standard error) and {95% confidence interval} 
 

 Pnuemo EDA Cardio Uniform 

1.15:1 .652 (.032)  
{.589 to .714} 

.945 (.012)  
{.922 to .968} 

.748 (.028)  
{.693 to .803} 

.936 (.013)  
{.912 to .961} 

1.14:1 .657 (.032)  
{.595 to .719} 

.947 (.012)  
{.924 to .970} 

.75 (.028)  
{.695 to .804} 

.941 (.012)  
{.917 to .965} 

1.13:1 .659 (.031)  
{.598 to .721} 

.948 (.012)  
{.925 to .970} 

.758 (.028)  
{.704 to .812} 

.944 (.012)  
{.920 to .967} 

1.12:1 .678 (.031)  
{.617 to .739} 

.948 (.012)  
{.926 to .971} 

.767 (.027)  
{.713 to .820} 

.949 (.011)  
{.928 to .971} 

1.11:1 .686 (.031)  
{.626 to .747} 

.948 (.012)  
{.926 to .971} 

.772 (.027)  
{.72 to .825} 

.954 (.011)  
{.933 to .974} 

1.10:1 .702 (.03)  
{.643 to .761} 

.951 (.011)  
{.929 to .973} 

.779 (.027)  
{.727 to .831} 

.958 (.010)  
{.938 to .978} 

1.09:1 .698 (.030)  
{.639 to .757} 

.952 (.011)  
{.930 to .974} 

.774 (.027)  
{.722 to .827} 

.962 (.009)  
{.944 to .981} 

1.08:1 .690 (.031)  
{.630 to .750} 

.953 (.011)  
{.931 to .974} 

.774 (.027)  
{.722 to .827} 

.966 (.009)  
{.949 to .984} 

1.07:1 .705 (.03)  
{.646 to .764} 

.953 (.011)  
{.931 to .975} 

.771 (.027)  
{.719 to .824} 

.968 (.009)  
{.950 to .985} 

1.06:1 .713 (.03)  
{.654 to .771} 

.953 (.011)  
{.931 to .975} 

.767 (.027)  
{.714 to .821} 

.970 (.009)  
{.953 to .987} 

1.05:1 .715 (.030)  
{.657 to .773} 

.953 (.011)  
{.932 to .975} 

.767 (.027)  
{.714 to .821} 

.971 (.009)  
{.954 to .987} 

1.04:1 .738 (.029)  
{.681 to .795} 

.954 (.011)  
{.932 to .975} 

.772 (.027)  
{.720 to .825} 

.971 (.009)  
{.954 to .987} 

1.03:1 .746 (.029)  
{.69 to .802} 

.954 (.011)  
{.932 to .975} 

.771 (.027)  
{.718 to .824} 

.971 (.008)  
{.954 to .988} 

1.02:1 .749 (.028)  
{.694 to .805} 

.954 (.011)  
{.932 to .976} 

.772 (.027)  
{.720 to .825} 

.971 (.008)  
{.955 to .988} 

1.01:1 .746 (.029)  
{.690 to .802} 

.954 (.011)  
{.932 to .976} 

.772 (.027)  
{.719 to .825} 

.971 (.009)  
{.954 to .987} 
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Table 2. Maximum areas under the curve and optimal ratios. 
 

  Maximum AUC (95% CI) Ratio 

Pneumograph .749 (.694 to .805) 1.02:1 

Electrodermal .954 (.932 to .975) 1.04:1 

Cardiograph .779 (.727 to .831) 1.1:1 

Uniform (composite) .971 (.954 to .987) 1.05:1 

 
 
 

Figure 1.  Maximum areas under the curve with optimal ratios. 

 
 
 
 These data show the bigger-is-better 
rule to be a reasonable and valid principle 
with which to assign numerical scores to PDD 
responses. This finding should not be 
surprising, considering the demonstrated 
effectiveness of computer scoring algorithms 
(Honts & Driscoll 1987, 1988; Kircher & 
Raskin, 1988; MacLaren & Krapohl, 2003; 
Nelson, et al., 2008; Raskin et al., 1988), 
which are increasingly capable of equaling or 

exceeding the performance of many human 
scorers while making use of any measurable 
difference in response magnitude (Nelson et 
al, 2008).  
 
 Although traditional assumptions and 
hypotheses regarding the interpretability of 
linear response ratios are yet incompletely 
studied, these results support the assumption 
that physiological reactions of larger 
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magnitude are generally associated with 
stimuli of greater saliency compared to stimuli 
that evoke smaller physiological responses.  
 
Weighted and Unweighted ESS  
 Previous studies have suggested that 
that EDA contributes approximately one-half 
of the diagnostic information in polygraph 
testing (Capps & Ansley, 1992; Harris et al., 
2000; Harris & Olsen, 1994; Kircher, 
Kristjansson, Gardner & Webb, 2005; Kircher 
& Raskin, 1988, 2002; Krapohl & McManus 
1999; Nelson et al., 2008; Raskin, et al., 
1988). Therefore, the ESS places 50% of the 
weight on the EDA data when compositing the 
pneumograph, electrodermal and cardiograph 
scores. This is accomplished by doubling all 
EDA scores, regardless of the magnitude of 
difference in the strength of reaction, and then 
summing the scores.  
 
 To evaluate the effect of doubling EDA 
values in the ESS scoring condition, EDA 
scores were decremented from 7-position to 3-
position scores that were weighted equally 
with scores from the other component 
sensors. Cutscores were obtained for the 
unweighted EDA condition using Monte Carlo 
analysis of the ESS scores reported in Nelson 
et al. (2008). 
 
7-Position Scoring System 
 Seven-position scores in the present 
study were based on the procedures described 
by the Department of Defense Polygraph 
Institute (2006), which employs 12 reaction 
features, and a 7-position numerical 
transformation rubric in which integer scores 
(i.e., -3, -2, -1, 0, +1, +2, +3) are assigned to 
each presentation of each test stimulus 
question. In this way, observed reactions to 
relevant questions and comparison questions 
were reduced to a single set of numerical 
values for each presentation of each relevant 
question. See Department of Defense 
Polygraph Institute (2006) for a full 
description of conventional manual scoring 
rules. 
 
 Decision rules for the 7-position 
scoring system are a composite of grand total 
and sub-total decision rules (e.g. the “spot 
score rule,” Light, 1999) in which a deceptive 
result can be determined by either the grand 
total or subtotal, while a truthful result 
requires minimum scores for both the grand 

total and every subtotal (“spot score”). 
Cutscores for the 7-position system were 
those that have been used traditionally in field 
practice and past studies on 7-position 
manual scoring. Traditional ZCT cutscores 
evolved to their current standard usage before 
they were scientifically assessed using 
normative data. However, traditional 
cutscores have been the subject of 
considerable research (Blackwell, 1998; 
Krapohl, 2005; Yankee, Powell & Newland, 
1985). Statistical norms data for 7-position 
scores of ZCT exams were published by the 
APA (2011).  
 
3-Position Scoring System 
 7-position scores were decremented to 
their corresponding 3-position values. 3-
position scoring systems have been described 
repeatedly in published studies (Blackwell, 
1998; Capps & Ansley, 1992; Krapohl, 1998; 
Harwell, 2000; van Herk, 1991) and have been 
subject to some criticism for contributing to 
increased inconclusive results when cutscores 
are not adjusted for differences in the 
distributions of 7-position and 3-position 
scores. Krapohl (1998) showed that 
adjustment of cutscores could reduce the 
proportion of inconclusive results arising from 
3-position scoring systems, and that the 
simpler system may be capable of performing 
equivalently with the 7-position system. 
However, field examiners have largely 
continued to rely on traditional cutscores 
intended for the 7-position scores when using 
the 3-position system (Department of Defense 
Polygraph Institute, 2006), and 3-position 
results in this study were evaluated using 
traditional cutscores.  
 
Analysis 
 Decision accuracy, errors and 
inconclusive rates for criterion deception and 
criterion truthful cases were calculated. 
Bootstrap resampling was used to estimate 
the variance of the distributions of values for 
the weighted and unweighted ESS models, 
and the 7-position and 3-position scoring 
systems. Positive predictive values (PPV) and 
negative predictive values (NPV) were 
calculated with the assumption of uniform 
prior probabilities for truthful and deceptive 
conditions. PPV is the proportion of true-
positive results to all positive results, and can 
be understood as the estimated probability 
that a positive result or "failed" test is correct. 
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NPV is the proportion of true-negative results 
to all negative results, and can be understood 
as the estimated probability that a negative 
result or "passed" test is correct. A series of 
pairwise analyses were conducted, using 
bootstrap t-tests, when the results of the 
bootstrap distributions indicated a 
statistically significant difference in results 
between the scoring conditions.  
 

Results 
 
 Table 3 shows bootstrap mean decision 
accuracy and inconclusive rates, and 95% 
confidence intervals for the cohort of 
inexperienced examiners who scored the 
sample cases using the 7-position scoring 
system and the ESS.  

 
 

Table 3. Mean, (Standard Deviations) and {95% Confidence Intervals} for All Scoring 
Conditions 

 
 

 

 Decision Accuracy Inconclusive 
Results 

Empirical Scoring System 85.7% (4.8) 
{76.2 to 94.9} 

10.1% (3.9) 
{2.5% to 17.7} 

7-Position System  81.5% (5.7) 
{70.3 to 92.6} 

22.8% (7.5) 
{11.9 to 33.6} 

3-Position System  87.2% 
{76.7 to 97.7} 

32.8% 
{20.9 to 44.5} 

Unweighted ESS 85.5% 
{75.5 to 95.5} 

21.4% 
{11.1 to 31,8} 

 
 
 
 It was not possible to calculate 
statistical confidence intervals for NPV for the 
7-position and 3-position systems because 
there were no false-negative errors in the 
present study. Evaluation of the NPV for the 
weighted and unweighted ESS models showed 
that all statistical confidence intervals include 
the ceiling value of 100%. In other words, no 
statistically significant difference existed 
between the NPV of the ESS and other scoring 
systems in this study.  
 
 A double bootstrap of the results of the 
ESS and 7-position scoring systems showed 
the mean rate of decision agreement for ESS 
and 7-positions results was .88 (95% CI = 
77% to 99%).  
 
 Tables 4-7 show pairwise comparisons 
between the five decision approaches using 
the results from 7-position scoring and the 

ESS. Although most differences were not 
significant, there was a statically significant 
reduction in inconclusive results for the ESS 
(p < .01) compared to the 7-position system 
(Table 4), that was loaded on criterion 
deceptive cases. Additionally, there were 
statistically significant increases in both test 
sensitivity and test specificity. Differences in 
false-negative and false-positive errors were 
not statistically significant.  
 
 Table 5 shows a comparison of ESS 
and 3-position results. Decision accuracy for 
3-position system did not differ significantly 
from the ESS. However, there were 
significantly fewer inconclusive results in the 
ESS condition for both truthful and deceptive 
cases, in addition to statistically significant 
increases in test sensitivity and test 
specificity. Differences in false-negative and 
false-positive errors were not significant.  
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Table 4. Differences in Decision Outcomes for ESS and 7-Position Scores 

 

 ESS 7-Position Sig. 

Decision Accuracy 85.7% (4.8) 
{76.2 to 94.9} 

81.5% (5.7) 
{70.3 to 92.6} (p = .22) 

Inconclusive 
Results 

10.1% (3.9) 
{2.5% to 17.7} 

22.8% (7.5) 
{11.9 to 33.6} (p < .01)* 

Sensitivity 94.6% 
{86.9 to 1} 

85.8% 
{73.1 to 98.5) (p = .05)* 

Specificity 57.3% 
{39.0 to 75.6} 

40.0% 
{22.4 to 57.6} (p = .03)* 

Inconclusive 
Truthful 

18.4% (7.2) 
{4.3 to 32.5} 

31.4% (8.7) 
{14.4 to 48.4} (p = .05)* 

Inconclusive 
Deceptive 

2.6% (2.9) 
{0 to 8.3} 

14.2% (6.5) 
{1.5 to 26.8} (p = .01)* 

False-positive 
Errors 

24.3%  
{8.5 to 40.2} 

28.6% 
{12.5 to 44.7} (p = .30) 

False-negative 
Errors 

2.8% 
{0 to 8.5} 

0.0% 
{0 to 0} (p = .09) 

Positive Predictive 
Value 

81.2% (6.5) 
{68.5 to 93.9} 

74.9% (8.6) 
{60.4 to 89.5} (p = .18) 

Negative Predictive 
Value 

94.9% (5.3) 
{84.5 to 100} (N/A) (N/A) 

          

        * statistically significant difference  
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Table 5. Differences in Decision Outcomes for ESS and 3-Position Scores 

 

 ESS 3-Position Sig. 

Decision Accuracy 85.7% (4.8) 
{76.2 to 94.9} 

87.3% (5.2) 
{77.0 to 97.5} (p = .38) 

Inconclusive Results 10.1% (3.9) 
{2.5% to 17.7} 

32.7% (6.1) 
{20.7 to 44.8} (p < .001)* 

Sensitivity 94.6% 
{86.9 to 1} 

82.8% 
{69.4 to 96.3} (p = .02)* 

Specificity 57.3% 
{39.0 to 75.6} 

35.5% 
{17.9 to 53.0} (p = .01)* 

Inconclusive Truthful 18.4% (7.2) 
{4.3 to 32.5} 

46.9% (9.2) 
{28.8 to 65.0} (p < .001)* 

Inconclusive 
Deceptive 

2.6% (2.9) 
{0 to 8.3} 

17.1% (6.9) 
{3.7 to 30.1} (p < .01)* 

False-positive Errors 24.3%  
{8.5 to 40.2} 

17.6% 
{3.8 to 31.4) (p = .20) 

False-negative Errors 2.8% 
{0 to 8.5} 

0.0% 
{0 to 0} (p = .09) 

Positive Predictive 
Value 

81.2% (6.5) 
{68.5 to 93.9} 

82.9% (6.9) 
{69.5 to 96.3} (p = .42) 

Negative Predictive 
Value 

94.9% (5.3) 
{84.5 to 100} (N/A) (N/A) 

 

        * statistically significant difference 
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 Table 6 shows the results of a 
statistical comparison of 7-position scores and 
3-position scores. Differences in test 
sensitivity and test specificity were not 
significant, nor were differences in false-
negative and false-positive errors. There was a 
statistically significant difference in the 

percentage of inconclusive results between the 
7-position and 3-position scoring systems. 
This difference was limited to truthful cases. 
The 7-position scoring system produced 
significantly fewer inconclusive results with 
criterion truthful cases compared to the 3-
position system. 

 
 
 

Table 6. Differences in Decision Outcomes for 7-Position and 3-Position Scores 
 

 7-Position 3-Position Sig. 

Decision Accuracy 81.5% (5.7) 
{70.3 to 92.6} 

87.3% (5.2) 
{77.0 to 97.5} (p = .14) 

Inconclusive Results 22.8% (7.5) 
{11.9 to 33.6} 

32.7% (6.1) 
{20.7 to 44.8} (p = .04)* 

Sensitivity 85.8% 
{73.1 to 98.5) 

82.8% 
{69.4 to 96.3} (p = .32) 

Specificity 40.0% 
{22.4 to 57.6} 

35.5% 
{17.9 to 53.0} (p = .31) 

Inconclusive Truthful 31.4% (8.7) 
{14.4 to 48.4} 

46.9% (9.2) 
{28.8 to 65.0} (p = .04)* 

Inconclusive 
Deceptive 

14.2% (6.5) 
{1.5 to 26.8} 

17.1% (6.9) 
{3.7 to 30.1} (p = .33) 

False-positive Errors 28.6% 
{12.5 to 44.7} 

17.6% 
{3.8 to 31.4) (p = .08) 

False-negative Errors 0.0% 
{0 to 0} 

0.0% 
{0 to 0} (N/A) 

Positive Predictive 
Value 

74.9% (8.6) 
{60.4 to 89.5} 

82.9% (6.9) 
{69.5 to 96.3} (p = .14) 

Negative Predictive 
Value (N/A) (N/A) (N/A) 

 

        * statistically significant difference 
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 Table 7 shows the comparison of ESS 
and unweighted ESS results. Test sensitivity 
to deception was significantly increased for 
the weighted ESS model, along with a 

statistically significant reduction in the 
proportion of inconclusive results for criterion 
deceptive cases. Differences in false-negative 
and false-positive errors were not significant.  

 
 
 

Table 7. Differences in Decision Outcomes for ESS with weighted and unweighted EDA 
 

 ESS (Weighted) Unweighted ESS Sig. 

Decision Accuracy 85.7% (4.8) 
{76.2 to 94.9} 

85.5% (5.1) 
{75.5 to 95.5} (p = .50) 

Inconclusive Results 10.1% (3.9) 
{2.5% to 17.7} 

21.5% (5.3) 
{11.1 to 31.8} (p < .01)* 

Sensitivity 94.6% 
{86.9 to 1} 

78.2% 
{63.9 to 92.5) (p < .01)* 

Specificity 57.3% 
{39.0 to 75.6} 

54.7% 
{36.3 to 73.1} (p = .39) 

Inconclusive Truthful 18.4% (7.2) 
{4.3 to 32.5} 

24.2% (8.2) 
{8.2 to 40.3} (p = .22) 

Inconclusive 
Deceptive 

2.6% (2.9) 
{0 to 8.3} 

19.0% (6.9) 
{5.5 to 32.5} (p < .001)* 

False-positive Errors 24.3%  
{8.5 to 40.2} 

21.1% 
{5.7 to 36.4} (p = .34) 

False-negative Errors 2.8% 
{0 to 8.5} 

2.8% 
{0 to 8.5} (p = .50) 

Positive Predictive 
Value 

81.2% (6.5) 
{68.5 to 93.9} 

80.7% (7.1) 
{66.7 to 94.6} (p = .47) 

Negative Predictive 
Value 

94.9% (5.3) 
{84.5 to 100} 

94.7% (5.6) 
{83.6 to 100} (p = .48) 

 
      * statistically significant difference 
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Discussion 
 
 The weighted ESS model produced 
significant increases in test sensitivity to 
deception and significantly fewer inconclusive 
results when compared to the 7-position, 3-
position and unweighted ESS models. The 
difference in inconclusive results was 
primarily loaded on deceptive subjects. 
Comparison of the 7-position and 3-position 
systems revealed that the 7-position system 
also produced significantly fewer inconclusive 
results among truthful cases, suggesting that 
weighted scoring models may generally 
outperform unweighted models.  
 
 Although overall differences in decision 
accuracy were not significant, none of the 
scoring models in this study outperformed the 
ESS along any measured dimension of test 
accuracy. One obvious implication begins to 
emerge: limiting test data analysis activities to 
the interpretation of a core set of primary 
scoring features does not reduce decision 
accuracy.  
 
 The importance of expertise, or lack of 
expertise among the participants in this study 
participants, deserves discussion. The goal of 
applied research is to create, define, and 
refine knowledge that can be generalized to 
practical field circumstances. Past studies in 
PDD scoring accuracy have sometimes relied 
on expert examiners as participants. 
Assuming a normal distribution of abilities 
and skills, 2.5 to 5.0% of professionals can be 
expected to possess skills that exceed the 
normal range and deserve the "expert" 
designation. It is also likely that a somewhat 
larger proportion of examiners will want to 
consider themselves experts, but the simple 
and obvious mathematical fact is that most 
professionals' skills will be within the normal 
range. Effectiveness of test data analysis 
models that are verified as effective with those 
professionals whose skill level is in the top 2.5 
to 5.0% may not be generalizable to the 95.0 
to 97.5% of professionals whose skills are in 
the normal professional range. For this 
reason, studying PDD decision accuracy 

under optimal conditions could lead to results 
that may not be fully generalizable to field 
conditions.  
 
 An optimal-conditions approach to 
applied research may lack external validity if 
the model is not also verified as effective with 
professionals of lesser experience or 
qualifications working under sub-optimal 
conditions. A scoring model with known 
reliability and validity for professionals with 
skills within the normal or average range of 
abilities is arguably more applicable and 
generalizable to the range of individuals and 
circumstances in field practice settings. 
Validity and reliability of the PDD test will be 
most effectively improved by increasing the 
skills of the majority of examiners rather than 
a small number of exceptional experts at the 
extreme end of the skill level continuum. 
Results from other research involving 
experienced scorers should be compared with 
these study results to better understand 
issues related to expertise in the test data 
analysis arena.  
 
False negative errors 
 Some of the statistics of interest could 
not be calculated from the sample data, 
including NPV for both 7-position and 3-
position systems. The reason for this was an 
absence of false-negative errors with the 
sample cases. A second ancillary analysis was 
completed to help understand the significance 
and meaning of this observed result. Krapohl 
(2006) reported an inconclusive rate of 23% 
among truthful cases for Federal ZCT exams, 
along with decision accuracy of 82.0%. The 
false-positive error rate among truthful cases 
was 14.0% for the studies cited (Blackwell, 
1998; Krapohl, 2005; Yankee Powell & 
Newland, 1985). For deceptive cases, Krapohl 
(2006) reported an inconclusive rate of 9.0%, 
decision accuracy at 97.0%, and false-negative 
errors at a rate of 2.7%.  
 
 Using the 2.7% false-negative rate as 
the expected mean frequency, a Poisson 
analysis3 (Haight, 1967) showed that the 
probability of observing zero false-negative

 
 
 
 

3 Poisson analysis can be used to predict the random chance probability of observing a given frequency of rare 
events (i.e. 0 FN errors) in a time-series sample of a known size (i.e., N = 60) when the expected frequency is known 
(i.e., 2.7% FN errors reported in previous studies. 
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errors in a sample of the present size was not 
significant (p = .44) in a small sample such as 
that used in this analysis. 
 
 Based on these data, it would not be 
realistic to expect a false negative error rate of 
zero in field settings. The only reasonable 
interpretation that can be made regarding the 
present data is that the confidence intervals 
for the ESS include the observed of the 7-
position and 3-position systems and that no 
statistically significant difference exists in NPV 
or FN errors between the ESS and the 7-
position and 3-position systems. To explain 
further, a consequence of the small sample 
size is a high likelihood of observing zero false 
negative errors due to random chance alone. 
Moreover, it is unlikely that any test can be 
expected to function with perfect accuracy 
under all conditions.  
 
False-positive errors 
 The participants in this study 
produced more false-positive errors than were 
observed in previous studies on the ESS. This 
suggests the potential for a scoring bias 
among the study participants. Future studies 
should evaluate the role of scoring bias in the 
results of manual test data analysis 
paradigms. 
 
Within-test subtotal score differences 
 A third and final ancillary analysis 
involved between-subtotal score differences. 
Within-test differences between subtotal 
scores are sometimes of interest to field 
examiners when evaluating data that produce 
a truthful grand total score while one of the 
subtotals produces a score that appears 
inconsistent with the trend of the other 
subtotals or the total score. The concern to 
field examiners will be whether or not the 
subtotal scores provide a reliable and useful 
opportunity to achieve an accurate deceptive 
result and reduce the occurrence of false 
negative errors. 
 
 A bootstrap analysis of the distribution 
of within-test differences between subtotal 
scores produced a normal distribution of 
values, with a mean of 3.6 points, and 
standard deviation of 2.3 points. The mean 
within-test difference for truthful cases was 
4.3 (SD = 2.5) and for deceptive cases was 3.0 
(SD = 1.8). Bootstrap calculation of the z-value 
of the normal distribution of within-test 

differences in subtotal scores showed the 90th 
percentile to be 6.7 (95% CI = 5.3 to 8.1) 
points for all cases, 7.5 (95% CI = 5.4 to 9.8) 
for truthful cases, and 5.0 for deceptive cases 
(95% CI = 3.1 to 6.9).  
 
 These data suggest that a within-test 
difference of less than 8 points can be 
considered to be a normal occurrence among 
truthful examinees. Differences of 8 or more 
points between subtotal scores can be 
reasonably expected to be observed in less 
than 10% of ZCT exams. Field examiners who 
desire an evidence-based guideline for the 
interpretation of extreme within-test 
differences between subtotals may wish to 
consider a difference of 8 or more points to be 
an unusual occurrence, and might be justified 
in setting aside the grand total result as 
inconclusive under this condition. However, 
there were no significant differences in 
decision accuracy or inconclusive results with 
either truthful or deceptive cases using both 
the grand total rule and two-stage rule, when 
the sub-total scores exceeded 8 points in 
difference.  
 
 Imposition of a more restrictive (i.e., 
less than 8 points) boundary of subtotal 
differences resulted in substantial decreases 
in both test specificity and overall decision 
accuracy, along with increased inconclusive 
results for truthful examinees. It appears the 
use of scientific decision rules, statistically 
optimal cutscores, and Bonferonni correction 
will optimize the test accuracy without the 
need for the additional rule concerning within 
test differences between subtotal scores. An 
important consideration is that the addition of 
rules based on hypothesis alone, in the 
absence of supporting evidence, may be 
unwarranted, can be expected to deplete 
decision accuracy, and might be expected to 
contribute to test results that lead to 
unproductive post-test activities in field 
settings.  
 
Limitations 
 Despite the encouraging results from 
this study, several limitations exist. Both the 
cohort of inexperienced examiners and the 
confirmed case sample are small in size, 
meaning that there is some possibility that 
important conditions that affect fieldwork may 
not be well represented in the present study 
or that some statistical results become 
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influenced by the small sample size. 
Additionally, the present study does not 
address statistical problems inherent to multi-
issue screening exams, and these will need to 
be addressed in a separate project. The 
present analysis is not intended to determine 
the causal relationships for the observed 
results, and it remains unknown whether the 
effectiveness of the ESS is due to differences 
in scoring features, simplified 
transformations, decision rules, or the 
statistically derived cutscores. These 
questions should be addressed in future 
studies. 
 
 One aspect of the study data collection 
method deserves further discussion, in that 
all study participants learned and completed 
ESS scoring tasks after first learning and 
completing the 7-position scoring task, leaving 
an unknown potential for a confounding 
practice effect. A preferable design would have 
been a counterbalanced analysis in which half 
of the participants scored the first subset 
using the ESS while the other half first used 
7-position scoring. However, it was not part of 
the teaching schedule for the small cohort of 
participants. Instead, each student scored 
different subsets and no student scored the 
same subset using both TDA models. 
However, the potential practice confound is 
incompletely controlled in this study. 
Although observed differences were 
statistically meaningless in this study, 
replication of this experiment with the 
opposite sequence of activities or a 
counterbalance design would help to better 
understand the role that skill acquisition 
played in these observed results.4 

 
 Given the complexity and ambition of 
this study, involving the comparison of the 
ESS to 7-position, 3-position, and unweighted 
ESS models, the use of an ANOVA-based 
analytic approach might be preferable to some 
readers. A bootstrapping and frequency-table 
analysis was thought to be a simpler 
alternative that also provides potential readers 
greater information and insight into the effect 

of scoring condition on various aspects of the 
test accuracy profile.  
 
 Another issue that deserves discussion 
is the sampling methodology and use of 
bootstrapping for statistical analysis.  There is 
no great advantage to use of bootstrapping as 
an analysis method, and the results from 
bootstrapping are not expected to differ 
markedly from those of other methods. 
However, bootstrapping does offer the 
advantage of the calculation of empirical 
confidence intervals that do not depend on 
assumptions about distribution shape. In 
addition to providing a robust analysis 
method, use of bootstrap resampling mitigated 
difficulties related to the number of 
participants and to group inequality in the 
sub-samples.  
 
 Bootstrapping, though considered 
robust against some departures in sampling 
distribution shape, cannot overcome the 
inherent limitations of a small sample and 
small cohort of participants. Use of a cohort of 
inexperienced examiners may partially 
overcome concerns about overestimation, but 
this does not overcome the overarching 
limitation that the results herein are 
informative only so long as it is assumed that 
the sample and cohort are representative of 
the population of examinees and other 
scorers.  
 
 An ideal sample of bootstrapping seed 
data would have included both randomly 
selected examinations for which each exam 
was scored by a different randomly selected 
examiner, thereby assuring complete 
independence of each examination. A practical 
limitation on this ideal is that field samples 
are never random as they depend on the non-
random case confirmation as a selection 
mechanism.  
 
 An alternative design might be to have 
all examiners score all cases using all scoring 
systems. However, an exhaustive pair 
sampling method might be expected to 

 
 
 
 
4 Generally recognized advantages of within-subjects (repeat measures) designs include the potential for more 
effective use of available participant resources, including the potential for greater statistical power compared with 
between-subject designs, and the potential reduction of confounding effects resulting from individual differences.  
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increase the introduction of both practice and 
fatigue effects into the sampling scores. 
Additionally, exhaustive pairing of exam and 
scorer for all conditions would have decreased 
the degree of independence among the 
sampling scores because similarity of scores 
would be more greatly influenced by the fact 
that the same scorers would have provided all 
scores for all scoring conditions using the 
same sample cases.   
 
 Because there was no expectation of 
complete independence in this study, due to 
the intent to complete the analysis with 
replication scores using a single case sample 
under different scoring conditions, the choice 
to reduce the scoring task to 10 cases for each 
participant represents a reasonable 
compromise that may have both increased the 
degree of independence among the data in the 
different scoring conditions (i.e., by reducing 
the uniform pairing of case and scorer in both 
conditions), and reduced the impact of 
practice and fatigue effects. 
 
 Another limitation was that this 
project did not attempt to determine the sta-
tistical effect of the major differences between 
the ESS and other scoring systems.5  Instead 
the goal of this study was to provide statistical 
confidence intervals for criterion accuracy 
profiles of the ESS and other scoring systems, 
with the hope that confidence intervals would 
offer accessible information to both scientific 
and non-scientific readers. Inquiry into causal 
and structural differences should become the 
basis of another study. A final limitation, due 
to the study design and the nature of the data 
collection method, was interrater agreement 
was not calculated for the study data. Past 
studies on the ESS have shown it to provide 
interrater agreement that equals or exceeds 
that of other scoring systems (Blalock et al., 
2009; Nelson et al., 2008). 
 

Conclusion 
 
 The results of this study provide 
several insights into manual scoring systems. 
These data suggest that an empirically 

developed weighted 3-position scoring system 
may produce accuracy rates that are 
equivalent to the 7-position system. Although 
no single study is sufficient to anchor 
empirical conclusions, results of this study do 
provide additional support for the validity of 
the ESS. Results of this study, together with 
results of earlier studies, suggest that human 
scores are capable of using the ESS to achieve 
high rates of decision accuracy that are 
equivalent to that of other extant scoring 
systems that rely on more complex 
assumptions and procedures.  
 
 A practical aspect of a simple 
empirically based scoring system is that 
reliable skill acquisition can be expected to 
increase, and difficulty in skill acquisition can 
be reduced without loss of test accuracy. 
Another benefit of a simplified evidence-based 
scoring rubric is that scoring proficiency 
becomes a less perishable skill for those 
examiners whose professional responsibilities 
include other forms of policing, administra-
tion, investigation, research, etc. Moreover, 
the simpler assumptions of the weighted 3-
position transformations of the ESS, 
compared to unwieldy linear assumptions of 
7-position numerical transformations, may 
provide a more realistic path toward 
understanding the validity of underlying 
theoretical constructs regarding the 
observation and measurement psycho-
physiological responses to PDD test stimuli.  
 
 The ESS appears to provide an 
attainable and effective system for analyzing 
the results of PDD examinations and 
continued research on the ESS is 
recommended. Future studies should explore 
the use of normative data and norm-
referenced cutscores to better understand 
differences between various scoring systems. 
Additionally, increased use of ROC analysis 
may provide a method that is more resistant 
to differences in cutscores compared to results 
based on the statistical hypothesis paradigm. 
Future studies should continue to compare 
the results of the ESS with other test data 
analysis models.  

 
 
 
 
5 The main differences are 1) a reduced scoring feature set, 2) the use of norm-referenced cutscores, and 3) the use 
of decision rules derived from scientific studies.  
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Appendix A.  Empirical Scoring System 
 
 
I. Physiological Signals 
 1. Respiration 
 a) Decrease in respiration amplitude for three or more respiratory cycles, beginning after 

the stimulus onset 
 b) Slowing of respiration rate for three or more respiratory cycles, beginning after the 

stimulus onset 
 c) Temporary increase in respiratory baseline for three or more respiratory cycles, 

beginning after the stimulus onset 
 2. Electrodermal response amplitude  
 3. Cardiograph baseline increase, observed at the diastolic baseline 
II. Transformations 
 1. Assign values of +, - or 0 using the 3-position scale and the bigger-is-better rule 
  a) Score any visibly discernible difference in response magnitude (without electronic or 

mechanical measurement) 
   b) Do not be concerned about traditional scoring ratios 
  c) Score each RQ to the stronger of bracketing comparison questions, for each component 

sensor 
  d) Double all EDA values to +/- 2 
 2. Score only timely reactions 
  a) Do not score reactions that begin before the stimulus 
  b) Do not score reactions that begin more than 5 seconds after a timely answer 
 3. Score only normal interpretable data  
  a) Do not attempt to score data that are affected by movement artifacts 
  b) Do not attempt to score messy or unstable segments of data 
  c) Do not attempt to score data of unusual response quality (dampened or exaggerated) 
III. Decision Rules 
  1. Two-stage decision rules (Senter Rules) 
  a) Optimal for most purposes 
   b) Increased sensitivity (without excessive increase in FP errors) 
  c) Reduced inconclusive results 
  d) Use Bonferonni corrected alpha for spot scores 
  2. Grand Total Rule - highest level of decision accuracy 
  3. Spot scoring rules 
  a) Only for multiple issue screening exams 
IV. Normative Data (cutscores) 
  1. ZCT (single-issue) 
  a) Total score >= +2 = alpha <= .10 (NSR/NDI) 
   • Total scores >= +5 = alpha <= .05 (NSR/NDI) 
  b) Total score <= -4 = alpha <= .05 (SR/DI) 
  c) Any sub-total <= -7 = Bonferonni corrected alpha <= .0167 x 3 RQs = .05 (SR/DI) 
  2. MGQT/DLST (multi-issue screening) 
  a) Any sub-total <= -3 = alpha <= .05 (SR)  
  b) All sub-totals >= +1 = alpha <= .10 (NSR)  
   • All sub-totals >= +2 = alpha <= .05 (NSR)  
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Appendix B.  Empirical Scoring System – Normative Reference Data for 
Single-Issue ZCT Exams with Three Relevant Questions 

(Nelson, Krapohl, & Handler, 2008) 
 
 
Mean deceptive score = -9.14 (SD = 8.74) 
Mean truthful score = 8.35 (SD = 7.89) 
 
Truthful (NSR) Cutscores 

Total NSR Cutscore p-value (alpha)
1 .106 
2 .085 
3 .067 
4 .052 
5 .040 
6 .030 
7 .023 
8 .017 
9 .012 

10 .008 
11 .006 
12 .004 
13 .003 
14 .002 
15 .001 
16 <.001 

 
 
Deceptive (SR) Cutscores

Total SR Cutscore p-value (alpha)
0 .127 
-1 .099 
-2 .077 
-3 .058 
-4 .043 
-5 .032 
-6 .023 
-7 .016 
-8 .011 
-9 .008 
-10 .005 
-11 .003 
-12 .002 
-13 .001 
-14 <.001 

 
Cutscores 
NDI >= +2 (a = .10) 
NDI >= +5 (a = .05) 
DI <= -4 (p = .05) 
Spot scores for DI <= -7 (Bonferroni corrected alpha = .0167) 
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Appendix C. Two-Stage Decision Rules  
(Senter 2003; Senter & Dollins, 2008) 

 
 
 
Two-stage decision rules provide; 

 1. Optimal decision rules for most purposes. 

 2. Balanced sensitivity and specificity to deception. 

 3. Increased sensitivity to and decreased inconclusive results compared to grand-total 

decision rule. 

 4. Protection from excessive increases in false-positive errors that may result when subtotal 

scores are permitted to supersede the importance of grand total scores. 

 
 
2-Stage Procedure 

Stage 1: Grand Total Only (do NOT use the Spot Score Rule at Stage 1) 

  A. If the Grand Total >= +2 then NDI (a = .10) or +5 (a = .05) 

  B. If the Grand Total <= -4 then DI (a = .05) 

Stage 2: sub-total Scores (only if the Grand Total is inconclusive during Stage 1) 

  A. If any sub-total (RQ spot) <= -7 then DI (a = .017, Bonferonni correction) 

  B. There are no NDI considerations using sub-totals at Stage 2 

 
 
* Decisions based on the sub-total/spot scores, in event-specific/single-issue exams, are made by 
comparing the sub-total score to the normative distribution of total (not spot) scores. 
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